{ "cells": [ { "outputs": [], "cell_type": "markdown", "source": [ "# **7.** Example\n", "\n", "\n", "This is an example generated with Literate based on this\n", "source file: [`example.jl`](https://github.com/fredrikekre/Literate.jl/blob/master/examples/example.jl).\n", "You are seeing the\n", "generated notebook output. The corresponding markdown (HTML) output\n", "can be found here: [`example.html`](https://fredrikekre.github.io/Literate.jl/dev/generated/example.html),\n", "and the plain script output can be found here: [`example.jl`](./example.jl)." ], "metadata": {} }, { "outputs": [], "cell_type": "markdown", "source": [ "It is recommended to have the [source file](https://github.com/fredrikekre/Literate.jl/blob/master/examples/example.jl)\n", "available when reading this, to better understand how the syntax in the source file\n", "corresponds to the output you are seeing." ], "metadata": {} }, { "outputs": [], "cell_type": "markdown", "source": [ "### Basic syntax\n", "The basic syntax for Literate is simple, lines starting with `# ` is interpreted\n", "as markdown, and all the other lines are interpreted as code. Here is some code:" ], "metadata": {} }, { "outputs": [ { "output_type": "execute_result", "data": { "text/plain": "2//5" }, "metadata": {}, "execution_count": 1 } ], "cell_type": "code", "source": [ "x = 1//3\n", "y = 2//5" ], "metadata": {}, "execution_count": 1 }, { "outputs": [], "cell_type": "markdown", "source": [ "In markdown sections we can use markdown syntax. For example, we can\n", "write *text in italic font*, **text in bold font** and use\n", "[links](https://www.youtube.com/watch?v=dQw4w9WgXcQ)." ], "metadata": {} }, { "outputs": [], "cell_type": "markdown", "source": [ "It is possible to filter out lines depending on the output using the\n", "`#md`, `#nb`, `#jl` and `#src` tags (see Filtering Lines):\n", "- This line starts with `#nb` and is thus only visible in the notebook output." ], "metadata": {} }, { "outputs": [], "cell_type": "markdown", "source": [ "The source file is parsed in chunks of markdown and code. Starting a line\n", "with `#-` manually inserts a chunk break. For example, if we want to\n", "display the output of the following operations we may insert `#-` in\n", "between. These two code blocks will now end up in different\n", "`@example`-blocks in the markdown output, and two different notebook cells\n", "in the notebook output." ], "metadata": {} }, { "outputs": [ { "output_type": "execute_result", "data": { "text/plain": "11//15" }, "metadata": {}, "execution_count": 2 } ], "cell_type": "code", "source": [ "x + y" ], "metadata": {}, "execution_count": 2 }, { "outputs": [ { "output_type": "execute_result", "data": { "text/plain": "2//15" }, "metadata": {}, "execution_count": 3 } ], "cell_type": "code", "source": [ "x * y" ], "metadata": {}, "execution_count": 3 }, { "outputs": [], "cell_type": "markdown", "source": [ "### Output Capturing\n", "Code chunks are by default placed in Documenter `@example` blocks in the generated\n", "markdown. This means that the output will be captured in a block when Documenter is\n", "building the docs. In notebooks the output is captured in output cells, if the\n", "`execute` keyword argument is set to true. Output to `stdout`/`stderr` is also\n", "captured." ], "metadata": {} }, { "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "This string is printed to stdout.\n" ] }, { "output_type": "execute_result", "data": { "text/plain": "4-element Array{Int64,1}:\n 1\n 2\n 3\n 4" }, "metadata": {}, "execution_count": 4 } ], "cell_type": "code", "source": [ "function foo()\n", " println(\"This string is printed to stdout.\")\n", " return [1, 2, 3, 4]\n", "end\n", "\n", "foo()" ], "metadata": {}, "execution_count": 4 }, { "outputs": [], "cell_type": "markdown", "source": [ "Both Documenter's `@example` block and notebooks can display images. Here is an example\n", "where we generate a simple plot using the\n", "[Plots.jl](https://github.com/JuliaPlots/Plots.jl) package" ], "metadata": {} }, { "outputs": [ { "output_type": "execute_result", "data": { "text/plain": "Plot{Plots.GRBackend() n=2}", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAGQCAIAAAD9V4nPAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOy9aXhb13XvvfYZAIIgQYITwJmiBoqDRsu2JA/ynDROIiuz4zhN4rRpkzZ+nce37X1jO7lO3LRNM9x7+zhNk7cZaieRkziJ29iV7diWY1u2JFsixUGiKIozwAEAB5AAzrTfD0eSYXECAZyzNoDz+2QD4DmLwuJa66z932sTSilYWFhYWFjkKhy2ARYWFhYWFphYidDCwsLCIqexEqGFhYWFRU5jJUILCwsLi5zGSoQWFhYWFjmNlQgtLCwsLHIaKxFaWFhYWOQ0ViK0sLCwsMhprERoYWFhYZHTWInQwsLCwiKnSTUR9vX1zc/PJ/55RVGsoW4ZgSzL2CZYrA6lVFEUbCssVkfTNFVVsa2wWJpUE+E999xz/PjxxD8/OzsrSVKKN7UwgUAgYJUs7CPL8szMDLYVFquzsLCwsLCAbYXF0litUQsLCwuLnMZKhBYWFhYWOY2VCC0sLCwschorEVpYWFhY5DRWIrSwsLCwyGmsRGhhYWFhkdNcSISqqn7605+Of2Nubu6BBx44cODAgw8+ODc3h2GbhYWFhYWF4XAA8OSTT957770jIyPxbxw8eNDj8Rw8eLCiouKJJ55AMs/CwsLCwsJYBABobGysqqp68MEH49945ZVXHn74YZvNtn///oceeuiee+5Z8ucVRTl69GgkEln81o4dO4qLiy97MTY3QyYGad0mwgtp+hXWhkqhaxpCEllfSGvyUUzIDCRJisVihBCjb6QthNXxQcKLvLee2OxG325JKMCZGfBFSL2TNhaimJAkkiTp3xS2IWmGxiKqf5BSynvruTy0P9T+ORiaJx4H3VwEKf4lxGIxSqnNZkuPZTkJlSXFPyB4G4i4hn9Gm822ahwTAGD79u2L3wgEAh6PBwA8Hk8wGFzu56PR6GOPPVZUVLT4rUceeaS1tfWyFyMTY+pzP14IT/M7b7JddweI5gU+SYNH++z/elYosUFZnnZmljQ46UNt0jVl1oSqJVhYWJifnzc0EdKgX3r+59r5Ls5TSxWZBvzC1muEfR8i+eblIo3CfwyI3zljFziozlP753mXSP+uOfa+6szwCkmS5ufn7XacAsIIaHhafuGg2nOMlFUBIXRylN+4XbzpY6S4zEwz/nNU+Ea3fU4hjU51NMorGtzXFLu7QeaS/YNYWFiglHKcJctIBhpbUA4/qbQfJsUV9g/ftyZnEASB5/lVPrPsjSnVgyClVNO05T5WUFDw8MMP79u3L2Grmp1b/0WYn5n5/Y+lf/9K2Z99VSirSvhnk8e3AO9/VqnMJ398P9dURABApfCbAe2v3hDu3kC+tos3/MEn05AkqaSkxLhEuHDi8PSvHy28+SMF9zyo13fa/Ozssz+P/PDLpZ950FbXZNB945mV4aN/UGZl+PWt/JXlF37T50fpvUf4wyHy/Wt5kfmoJUmSKIolJSXYhqSHWF9H8KffyL/6XYUf/SnnKAAAGovMHf5t+N8fKvn4l/JarjLBBkmDz72iHp2g/3Itf0v1Ba84PkXvPcI9N+X4xU2CS0zmsjabjVJaWJhRDQc2kH0DgR/+L/um7WX/8we8yxBXX/YPvbS0dGJiAgCmpqbKytJci/ElFSV3/03hvjsm/+//UKbG0nvxxfgWYN/vlTsauN/dxutZEAB4Ah9ax715h/DCGP3ia9YwXFNZOPrczO9+UP75fyi88YOXuhyc01V84HPuD//V1L89JA2cNtqGsAzvekZpKCSHbxcuZUEAuKWaHLtDCMbgI39QlWUrQIv0E+s9Efjx35fc/bdFt39Kz4IAQOwO1213lv3ZV0O/+E6k4zWjbVA0+Mgf1FAMjt0hXMqCALCrjBy+XagvIO96Rglb4+hNRB47P/Xo/3Td/qfuj95rUBaEJRNhe3s7AOzevfvQoUOU0kOHDu3du9eIezv3vsf17k9Mff9BLRI24vo6URXe/6zyyQ3cl7cv0dUoy4P//hPh1XH6rVNWzDOJ2Nn2mf/69/LP/4NYtW7xu3mtu0vuuj/w7w8rwXHjbNAofPxFtc1NHr2GFxb9EeQL8Mub+ZhGv/SGVSGZhDw+FPjpP5Z+5kH7xiVWamz1m8v+/OuhJ/6PNNxrqBn3va7GVPrLm/n8Rc0ygYNHr+Hb3OSul1TNGkdvCupsaOoHXyn+wF/m77zB0BstkQjvv/9+ALj77rv7+/vvvPPOgYGBu+66y6DbO/f8SV7LlaGff9ug6wPAfa+rG4rIAzuWffZ1ifDUbfy3TqmvjlvebThaeDr42D+V3P23QkXNcp/Ja76y8OYPB3/891Q1aqHumx3atEQfvWbZlrjIwS9uEg6N0IP9VoVkOFSWgj/6etH777E3Xq4quIRYs9790S8Gf/z3WnQN576tiSf6tWdH6cGbheVa4gTg0Wv4UIx+s8PyCuOhNPjYPzqvvs2x43qjb/X2F/7cc8/F/0dBQcEjjzzyi1/84mtf+5rT6TTOgqL3f1YJjC8ce96Iix8aoYdG6L9du8pKaY2TfP9a/lOH1YXMUEhkMKEn/m/+VbcuWfXHU3D9HVyBa+75g0bY0Bmi3+5UH79xlSVAlwg/v5G/94jqX0ITbZFOZn7/Y7F6vfOqW1f+mGPL3rzmXTO/+b4RNvgj8MUj6s9u5FdeAhQ5ePxG/tudamfIqpuNJfzHp0CRXbd93IR74YsBCC+U3Pmlmaf+P21+Nr1Xjijw+VfVf72WL0xgcft9ddyV5eSRk1YrzEAip47I48OudyXQYCDE/dH/J/zy75TJ0fTaQAH+4hX161fwtc7VdUA7y8g9TdyXXre8wkDkkb7IWy8Wf+AvE/lw0fvuiZ49Ges7lXYzvvS6+plN3BVlq3tFrZN8/Qr+c6+oViY0DnUmMHvocfedXwJTdLb4iRAAxJr1ju3XzR56PL2X/dYp7Yoyclt1orrHb13N/9tprX/Ocm9DoKoy87t/c3/w80RISHXHF5UW3vLR6d/+IL1m/KxPkzW4pylRz//ydv61cfqK3/IKo5h+8l9d7/kU53Ql8mFidxTv//Pp33wPlpeyJ8ErfvraOH1gxyqto0vc08QpGjzeZzVIjWLmv/694JrbhfJqc27HRCIEANe7P7Hw1kvKlC9dF5yKwv/uUv/xqjX8gpX5cG8r/+Bxy7kNYf7V3wueOvumVZqi8RRcv18ZH4ydS1v5L2nwwJvat67mE98Nli/A13dxf3PUeig0hEjn61pswXn1bYn/iGPbtZw9f+HNF9Joxt8eUx/ZxS0WyCwHR+BbV/MPvqnFLL8wAHn0XKz3ZOEtHzXtjqwkQs7pKrhu/+yzP0vXBf+xXf1YI7eucG3b4O7bwr0wplnd/7RDpdjc8weL3vvp1T8aB+EF17vvnn36p+ky44entdZiuNa7Nq/4+HourMDTw5ZXpBtKZ5/5adF7/hTWuF3V9d5Pzx56PF1aqqeH6ZwMd65fWzC81ktai+GHZ6y6Of3MPvMfhbd8lNjyTLsjzpyzJSnYd4f/a59SAj6htDLFSwVi8KNerf0Da/7tnAJ8aQv/9ye1n92YaJPEIhHmjzxjW9ciVjas9Qfzd94we+jxWF+HfcPWFG2QNfjHDu1XN6/5m+UIPLSD+/oJ9T21DP29ZAGRziOE4/Nar17rD9obW/kST+TNF/NX09ckwtdOqA/u4JIYGfPVK/gPPq/+2WbOxsoDBSiKcuWVV2JbkRJUkbW5ab64DMhXLnvrxhtv/Pa3DdliwNAfNpeXX7D39vALvy7+8F+leKl/6dI+sI6rTkANsZi/bOYaD8rn59b8NGmxHFRV5l78dek9DyXzwxxXePNH5v7wROqJ8GfntKYiiN87nzgfaOAeOK697KfXr/Fp0mIF5v7wRNLtL9ctH5t+8tH8K29Z69PkZRz20VAMPtiQTCrbVUY2F8HPz2l/upGVTEgp7ezsPHr0KLYh6eell146fPiwQRdnKBECgPP6949/489dt/8pl8K0yagK3+tRX7o9yV+tQITPNnH/u0v77m7roTA9RNpfEcqrbLUbk/vx/F03zT79E9k/KHrrUzHj26e0b16d5HfKEfjSFu7bp7TrvZZXpAdpoEcLzzq2JDmsw75pOwi26Onjec0pPQB9u1P70pZkHgd17t/K/483VHYSoc6OHTuwTUg/g4ODxiVCtr4/vtDt2LJn/sgzqVzkF+e0nWVkc3HydeIXWrj/OKvNWYOU0kT45d8W3nAg6R8ngujc+57wH59KxYaXfFTR4NaEJcSLuXsD99q4dt4SFaeJ8Mu/Lbh+fyri+MJ9B8Iv/y4VG/rn6JFx7e4NydtwSzVRKLzks7wis2ErEQKA89r3zb/2NNDkHet7PdpftaRUtlc7yc1V3GOWNjodyCN92mwor2XN60DxOPfeHjnxshZdSPoK3+vRvtCSdN0PAOAQ4FObuH/tsbwiDaizoejpt1Jc4XPsuF4eOZfKsOLv92if2sQ5UuiLEYAvtHCPdltekdkwlwhttRs5pyt6+s3kfvxEgE5E4d01qS7k/EUz930r5KWD8GtPO/e+J8WFHN7ltm/aHnnzxeR+fDwCz41qn0i5f/Xnm7mfnNUkyy9SZuHos45t16Z40CARxPyrbkm6gSRp8OOz2uc2p+oVd23gnh/Txq3xQ5kMc4kQAJy73z3/+n8n97M/PKN9ZlPyHf9L3FhF5hU4PmV1PFKCStHIyZfTIu1LxSt+elY7UM8ld3pOPBtcpNVNnhq0MmFqUDr/+iHnnnenfiXn7ncvHH0+uX0UvxvUtrjJeleqwcIlwoF67j+sBlImw2IidOy8IdZ7MomJa1EVDp7T/nRjGnR9BOBTm7gf9VrOnRKRk3+0rWtNy+EpeU071fCMPHY+iZ/9ca/2mYRHyazMZyyvSJlYfycRbWk5clIorxbKq6Pdx5L42R/1ap/elCavaOJ+ZG0ozGRYTIRcXn5ey1ULJ9YsEPqvIW1HGakrSI/A/e4N5Il+a3JESswf+8Oqk5QThRDnrpsXjv9hrT93fIrKFPZ60uMVBxq41yeoNYY7FRaOPZ9/5S3pulr+Vbck4RX+CLwxQQ8ktWtiMXs9RNKsBlIGw2IiBID8XTctHFuzcz/WR1MRgF1GXQFpc5NnRqxCL0nU6Sl59FwS26WXI3/XTQtvvrjWIZOP9Wmf2JB6s/yiDQK8v577xTnLK5KEylKk47X8K25M1wUd26+LnTmx1jNNf3FO21+/hplqK0MAPrHBktdlMIwmwrymHWpwfE2jR0MxeMmnpavE0/n4eu5nfVaVlyQLJw47tu5NcMR2IgieWt5VEjvXkfiPqBQOntPubEznLviPr+d+ZiXCZIn2HBNr1vNFpem6IJfntDftiHS8uqaf+vk5ba0z1Vbm4+vJE/2adSBFhsJoIgSOd2y7NnLy5cR/4jeD2q3VXCInLiXOB9dxz45qYWtDYVJE3jqcxsJfx7Fj38KJNXjFYR+tcZKNRelMhDdVkaEwtU4pSY6Ft17K35lmr8jfuS+yFq/on6ODYXpTVTq9YmMRqconh60NhZkJq4kQwLHj+jWFvCf6tY+ktfAHgBI7XOMhvx+2yv81owT86vSkfX2qc9EuI3/79ZGOV0FLdOX2iX7tI41pdnKewAfXcb/st0LemqFSNHb6LceWPem9bF7L1dLgmcTldb/spx9o4Ph0D8v7aCP3y/NWrEgIVVU//em1jeA3FHYTob2xTZsLJXguazAGr0/Q99Sm/9f58Drul+etkLdmIu2v5G3Zk/ZDNfmSCqHEG+tLqDuqUvjNoPahdemfDvrhddyvrJC3dqI9x2wNmxM8ejBxiGizb94ZOfVagp//1XntQ+vSHys+tI78ZsDqjq7Ok08+ee+9946MjGAb8jbsJkIgxLFlb6QjIef+zyHt5irOacDk1PfVc8+PagvpOe8lh4h0vOrYeo0RV3ZsuzbSntCC0Ct+WuMkRgxPv85LhubpYNiKeWsj0m6UV+RvTdQrBsN0aJ7uq0y/V6wrJNVOYp3hfBnf+c53fv3rX1/674MHDzY2Nn7iE5/Ateoy2Bq6fRmObdfMPP2Twps/vOonfzNAjSj8AaDUDrvKyHOj2v56hosGxlBng8rEiH3jNiMu7ti6d/Jf/qb4Q19YdVrNbwa1A8Z8azyB99Vxvx2g97ZZh1EkClWV6OnjRQc+Z8TF81quDB38rhZdWHVazW8H6Htr098X1TlQz/12UNtXydZk9sf7NNPaWp/YQC572r7uuusef/zxD37wg7Isv/LKK9/73vcqKirMMSZxmE6EtvVblMkxdTa48o7siAIv+bQfXZ9WnUwc++u53w3S/SmdfJBbRDtfz2u5kvCGeJdQXs05CqTh3lV3ZD81SJ+6zajy5Y567lun1HvbrPIoUWJn20VvPV/oNuLixO6wNbbFeo47dly/8id/N6jdt8Uwr2gg739W+85ugy6fJDvLiNOo6Hg5LYtOO9i+ffs3vvGNUCjU29vb0NDAYBYExhMh4YW8pp3Rrjece/5khY89N6pdUUbcdqPMeH89+fpJVaW8QVVk9hHpPOK8Mk376Jcir2135NSRlRPhqSAlAG1uo76zm6vIXS/SYAxKDHO8LCPaeSSv1cAU4WjbHek8snIiDMXgrQC9pcqoRNjmJgSgI0i3ljAULJqLSXMKp/GkiCAIe/bsee211zo6Om65JW2DFNIL6/VsXtvuSOcbK3/mP4fo++oM/EXqC4jXQd6YsFr/CUGlaOxcp33zTuNu4WjbHe18feXP/OcQfW+dgX/8DgFurOKesRTFCRPpPupoMzAR5rVeHe05tvLc0WdGtH2VKR03sSrvqyf/NWTFindw3XXXvfDCC8eOHbvuuuuwbVka5hPh5l3SuQ4qS8t9gAI8PWxsyAOA99aRp62QlxjR3pO2+ibOUWDcLWz1m9W5aTU0scJnfj+svdfI8ggAbq8lTw9bIS8h5LHzhOMFT61xt+CLSoXSSmmgZ4XP/H6IvrfW2Fhxey1nbbi6jB07dpw7d27btm0FBQaGhVRgPRFy+QViVeMKcvmTAVogwoaUR8ivzHtqud9bIS8xot1H81quMvYehOQ1X7HCqOVADLpC9Hqv0V5BDo1YcvmEMMMrAPJarlzBK1QKz45q7zE4EV7vJV0hGogZepMMw2az1dfXX9YXfe6557DsWQzriRB05+5Z1rmfGaZGezYA7K4gw2E6tmDFvNWJnj7uaL7S6LvkNa/kFc+OaDdUcnaDtXvVTlJbYPXMEyLaczzPDK+4agWveGOCVueTaqex4cLOww2V3LPWjOKLKIrS19c3NjZ25ZWGO0DSZEIibN61wjm9/z2ivbvG8N+CJ3BLNXdoxAp5qyD7hwgQQztgOnlNO2N9p5ZbEPrvEZr64cyJ8O4a8t9WyFsNLTovj56zb0jzmKHF2Oo2qTMBdSaw5LuHRrQ/Mb5oBoA/qSXPWA2kixw5cuTv/u7v/vqv/9pms2HbsiwZkAjFqkYaXVAC/sVvzcrQHjBkb+xi3l1DrES4KrHTx+3Nu0y4Eed0CZ5a6Xz34rcowLMjmlmJ0CqPVifW225b10JE4+Mgx+Vt2hE989aSbx4ape8yvmgGgHdVk+dGNcstdK677rpf/epX11+/yrYWXDIgEQIh9qYdsaWc+4UxbY+H5Jmye/XWavL8qGZ598pEz7yV13SFOffK23zFkq2CjiAtspEGAwbKLGaPh5yZsRaEViF65s28JgNVxPHYN18RO3188evBGJyepuk6lnJlGgpJkY20B6xgkTFkQiIEyNu0c8kq79kRemu1Sb9CtZN488mb1tmby0NlKdbfZUIHTMfetHPJRPjsCL212qRdUzYOrvWQF8as7uhKxE6/Zd9sYnl05gTQy/9O/zCmXeclNrMC3q3V5NlRK1ZkDJmRCO1NO2Jn2xefyPr8GL3FrJAH+kPhmOXcyyINdIuVDVy+SQppW32TOuVbfObAc6OauV7BPW+FvOVRAj6qSKKnzpzb8UWlXEGxPHrustefGzVwH/1ibqkmz49a5VHGkBmJkHeV8K4SabQv/sWhMJ2RTJ3gcHMVZzn3CkTPnMhr2mHa7Qgv2Na3xc62x78YU+H1CXpDpXmOfXM1sRLhCsTOnLBv2r7qYNg0krdpe7T35GUv/mHU1KL5hkru9QkaTfS4sJzjj3/842c/+9k77rjjvvvuY+EYisxIhKA/FJ45Ef/KC2P0pirOzMFB+yrJsUnLuZcldrbdvtG8RAgAeZt2RHvf4RVHJmirmxSZKE9rdZMFhQ5Y5/QuQ+xse97G7Wbe0b5pR+ydXnF+jkZU2mLYvL3FFNmg1U2OWFtrlsLn833zm9+8//77Dx48uGfPnm9+85vYFmVQItyw7bJt9S+M0ZtM0YteolCELSXktXHLuZdAi87L/kFbw2Yzb2rfuO2yJ8I/jGnpPXl8VQjATVXcC9bR5EtCaayvw77BkHNIlsO+YUvsfDdV5EuvvDBGb6w0tWgGgJurrMVjgKWOYfL5fDfddNPmzZvtdvttt902PDyMayEwPnQ7HvuGLcHH/omqyqUzDV7w0Yd2mp3Ib6oiL/q0m6rYOmaFBaRzp2z1m4lg1pR7AAAQKxu0SFidnuKLy/RXXhyj/+sKs7+dG6vIi2P0M5tMvm0GIPsHid3Bl5h64ADnKBAraqWhM/bGNv2VF33U5PIIAG6s4r7ypgomiYRWItp9dIWt2Oklr+WqvHcKo5Y8hmnnzp0AoKrqT37ykxtuuMEc21YgYxLhBecePGNvbAWAszOUJ4ZPVlvMDZWsODdrxM525BlzAOFKEGJfvzXW15G/6yYAmFegPUj3Vpge8irJV9+yav8liJ1tt28ytS+qY9+4NXa241IifMlHH77C7KJ5bwXpCNJ5BYw4MHxNcPmFQlmVSfdyFl72ynLHMB0/fvyHP/zhrl27Pv3pT5tj2wpgf0Vrwb5xa6yvQ0+EL/noPoMnSS7J3grSzoZzs0a0r8P9wc+bf1/7xm2xvnY9Eb42TneWEkPPFliS9S7CAZydoRuLGDp8hwVifR2Obdeaf1/7hm1zL/4a3vVxuFg0N5qyrzQehwA7Ssmr4/Q2E0U6S2JraLY1NGPdffExTJTSH/zgBz09PQ888EBNTQ2WYfFkzBohANg3bL20THjYT28wvdcBF537iLVM+E60SFidGhPrEJqD9g1bYn2n9P8+7NPMGTO0mBsqyWG/5RXvhNJYf6dp+0rjsTW2SkNn9GXCw36cohkA9lWSl31Wq+DyY5g6OjqOHDnyta99rbS0NBKJRCIRbAMzKhHaGlulwdP6eMmXkZ4IAWBfJTnst5z7HUj9Xbb6zQYdSb8yoqdOiy7o4yUP++k+EzdOxLOvkhy29DLvRB4f4hwFfFGp+bfm8vLFilp5uBcADvtMmsK4mH2V3MtWebToGKb29vaRkZEDBw68/yLYBmZUa5TLcwrl1fLw2ZHSzRrAetMXCHWu93JfP2FtoXgHsXOnbOu34NybEHtja+zcKbL1hpMBusf0BUKd673kayes8ugdxM6durRKZz56q8C2rvVlP31oB055tKeCnAjQqArmjIFklsuOYfrkJz/5yU9+Eteky8ikJ0IAsK/fEjvX+Ue/4UfNrcAl57a4ROxcp309Xshb3yad6zw6Sbe4ST5SabexiEgaHQxb5f/bSOdOIXqFrbEt1t85GKayhrZ2my/AFneuH9RlHcOUfuzr22LnTv3RT6/DS4QFImwuJscmc9q546FSVPYP2uqasAywNeJ7BQBc67H6YO8gdq7ThvhE2Ngqne/545h6nRczyl3rJTnuFdYxTOnHtq5FGuh+1a9da8oU+eW41kP+mNvOHY80cFqsajTjkJ1lsFWvV6cnTwxNX4ubCL3kFcsrLqIEfEA1oawSywDO6eKLS/t6+9FjxSu5LSmwjmFKP3yhm+YXFYUGWk2clrSYa73k1fGcdu54Yv2d+p4WNDhObGhWh3qu8aDW/h4rEb6N1N+Ftmx8EVtjm9zfhVseXePlXp+gquUXbJNhiRAAJj0tHyA9Zo9LeifXergjE9Q6m1BHOt+NnAgBgp7m62M9JXZMG7aVktEFGrTOJgQAgNj5bvs6ZK+Qa1vXhbrMnMu/mFI71DhJR9AKFkyTeYnwhLNld7QH14YKB5Tlke5py7kBNE0aPIO4XVfnpLN1T3SJ0+rNhCdwVbk1ivYC0vlu27oWXBtOOpuvXujhsYccXOMlr1pewTaZlwh/T5rrAsiJEACu8VghDwBA9g1wRaWc04VrxjNkY9XM+fg5yyjs9ZDXrJ45gBYJK8FxW3UjrhkvxTx5nKaGJnDN2FthxQrWybBEGFXhULRKlBfU2SCuJZZz68TOd9mxC38AeDGQR8qq5ZG+1T9qJNd4uNdyWyuvI53vsdU3AYe8e+61CSrXtMTOI7cKrKKZfTIsEb45RZtLOHtDszSA/FC4x0OskAcA0kAPel90dJ5GFOra0BLD9oqrK8ibU1TO+WdCabDHju0VsgZvTdHyphb0WLGhiCwodGwB1wqLlcikyTIAcGSC7qkg9vxmaaDHsfUaREtaislkhE5GoTwP0Qp8pPM9hbd+DNeGIxN0j4ezlTRHOl6DGzAtcYmwrpC0B+muMuyFKVRi57sLb/wgrg0dQdpQSIrWN08/eRjXEgKwu4I7GuD215gxhkPTtG9961sm3MhkOjs7jbt4piXCcfqhdcRW1jzz9E9xLeEIXFVOXp/Q3leXYU/VaUQLz2iRObGiFtcMvTyy1TTPPPVDXEsAYE8FeX0itxMhpfLQWcQBCzq6V4g1G+TxISrFiA1TUrzHQ46ZkghFUXzyySdffvllo2+UBAtvvpjXtJMrKErux0tKSvbt25deky6RYYnw9Qn6ras5m71JHuuPP6QXhd0V5PUJ+r46RBOQiQ302Oo3A0EO+q9P0Ed2cUKpF6imTk/yxeWIxuyuIM+P0r/CXzZFQ/YNcEUl6Pqp10/tajUAACAASURBVCfozVWEiDaxskEaOYs49RQAdleQ/3nepD+T/fv379+/35x7JY4Wnfd95RPV3/g++srxkmTS08xQmGqUNhQSYssTyirl0X5ce/Z4uNdze5lQGjxtq9+MbIMGHRdbkbb6zdLAaVx79CdCXBtwkQZ67NheAQCvT9DdFQQAbA34XnFlGemcJlIOLx5LA6dttRvZzIKQWYnwjUl6dcUFg231m6VBZOe+qpy8OZXT2+qlwdO2euQOWHuAbnCRAhGADa9oKiYhiU5Gca3ARBo6g14eTUYhGKNNRRfLI2yvKBChsQA6pzMp3qYXaagX3StWIJO+mDcm6NUXD9lhwblL7OBxkJ6c3VbPxlLQG5P06nKGvIIAXFmW0wcOSAOnbQ3IIe/oJL2yjOjzp2z1m9GFowCwq1Q7HsykeJtepIEedK9YgUz6YhaFvDO49gDAVeXkjVw9hkIeH+IKi9GXgt6YoFddKo/qNkmj/frRzYhcXUHemMzRLpgWXVBCE2JlA64Zb0xol4pmodRLVVU/uhmRK8vosanclVBJQ2fQi+YVyJhEqGhwMkCvvJgIRU+tFp7R5mdxrbq6ghzN1dpfGsQv/AHgaFx5ROwOocSj+AZxTbq6gstZr5CHe23V69GXgo5O0qvK3w5utvom9Lr5ihLtzVx9IlQCPiLY+KJSbEOWJWO+mM4QrS8gheLF/ydErNkgDfVi2gRwVTk5mqtPhNIgfokXioF/gTYXv11o2+qa0LujV5WTY1M0N91CGjyDvmxMAY5N0qvK3+kVQ8iJcLOLjkcglJMz2VnwipXJmER49J2eDXqVh50It5WQ3hkaQW7F4SAN9drqNuHacHyK7ry4FKTDgleU50GxjZydycVUKA31ithe0TdDXTZS4Xj7FRaeCDkCO0ro8alc9AqZgVixMpmcCOvwQ56dhxY3ORHIOeemsqRMjIjV63HNiNdP6bBQ+wPAleXkWE62CliQjMaLCXRsdZvk4V7AfkrfWaLlZgOJBa9YmYxJhMcn314g1LHVbZIZCHlX5WTIk0f7RU8dEcTVP2okx6cun+EiVNYrwXEai2CZpKN3R3FtMB91NkRlSSjx4JpxfIruemes4PILuYJiZWIEyySdnSVaDsYK0DRptF+s2YBtx0pkRiJcUKBvlm555wGbfHEZEKJOT2JZpbOrLBdDnjR0hoVex/Gpy8sjwgtiZb00eg7LJJ1dZblYHjGiDDw+Sa9cNOLOVrcRvYF0RSnNQa+Q/YN8cTmXl49tyEpkRiI8EaCtbmJbZKxYu0kaOoth0dvkZhNMGjqDvhQ0tkAlldYXLA55+D3znWWkI0iVHNtDITNQHikatAfpzkWJUKxrkoaRvaI2nyqUji3kVrhgQUywKpmRCI9PXt7r0LHVbUR37s3FxLdAZyRcK8xGGu6z1W7EtWFZr6jdJGMnwkIR6pykK8eGLUjDfbY6ZK/onqZ1zjh5+UVsdZvQyyMA2FVGjudY3SwPn0WPFauSIYlwaoleBwDYajfKw8hPhDyB7aXkzVzqjtJYRJ2eFL3I48aX8wqxdqOE7RUAsKs850KeNNwr1uILiZcuj6rXy2Pn0Yct5OBKivVEmDbenKJXrBDysMVgu8pyKxFKI31i1Tr0TdPLeoWnVpsLaZGw+SbFc0UZySmtvBqaILzAu0pwzTg+ubRXELtDKKlQxofNNymeXeW5FSuoqsjjQ2JVI7Yhq5ABiXBOhuF52uJewrn5QjcRbUrQb75V8ewqz62QJw31stDrWK72B0LEqkZ5uM90i97BFblWHg31ijX4XvHmIiHxJcRaBvQyOeYV8th5odSLexhkImRAIjwRoFvchF9mSp+tdqMV8kxGHsZPhENhygFU5S8f8rC7o9tLSVeIyjmjl5GGz6IvEMoadIbottKlvcJWg7+SUpVPBEKGwrkSLjJigRAyIhG+ObWEBuwSYg1+yNvoIpMRmjvDk6ThPvRdQcv1RXVstRulEWSvcAqwrpB0hnIm5I302bC9ojNE1xUS5zLHdbNQHgHAzjLInbpZGsGPFYmQAYnwrVVDHrZzcwS2lZK3cmO+jBZdUGcCoqcW14y3Ait5hVi7Ab32B4CdpeSt3Al5w2dF7Np/lfKoulH2D6DrZXbmkrZOHj7LvlIGMiIRrvJEWLtBHsHXy+ROd1Qe6ROrG1lQyqzkFRW16ty0toCvl8kRr1CC40QQ0ZUyb03Rncv0RQGA2B2826P4h8w0aTFXlOVK0XxRKbMO25DVYT0RhmUYDNOW4mWdmy90E9GuhCbMtGoxO8tyZeKoPNJnwx4xCqv1CS7oZbDny+SSV5xDHzwLqz0RAoCtZoM0giwp2Jk75ZF/UCjxEFsetiGrw3oibA/SVjcRVzRTrNkoozt3zrQ7pJE+9A7Y6DylADXOFUNeLX7I215KTuXGfBl5BL8DpmjQFaLbl38iBL2BhF0e6X47Op/94UIa7kPfV5ogrCfCE4GVeh06ttoN6IlQny8zK+NaYQYsaCJOBGDHal4h1myQR5BDXqEINU5yOgfOY5JG+tCfCE/P0BonKVhxDrytZoOELTIHffE4B1oF8kifrQa/T5AIrCfCt1ZcCtIRq9ej1/48gTY3OZntzk2lmBIcF7BnyryVSHnEgFcAwI6ynNDLyCPn0BvmicWKRnmsH11SsKOUnAjgmmAG0igTDfNEyIZEaKtZj76VEPQFoWwPefJYv+ipI/wy+nSzSCjkVdaroQkqRc0xaTl2lGb/MqE6F6KqwpdU4JrxVmB1r+AcBTwD5zHlRHlEqTx2XrSeCFMnpsLZWdq21EyZeHh3BdVUdTZkjlXLkQshj5ES72RglaUgAACOFz218tiAGQYtz84c8AqZgb4o6F5RsppXAIg1G9BP6cqFWKFMjPCFxVyeE9uQhGA6EXaF6HoXyUtAqC9Wr5dH8ZURWe/c8nCfWIu8QBiMwbRE17sSCHnV6yUGvKI9gN2JMxhppM+G7RUU4GSA7ljtiRD0BhJ2z3y9i8xINJjVIzgyZSu9Djc3N/fAAw8cOHDgwQcfnJubi3/vi1/84q0X+e53v2u+cSeDCZV4cMG5kau8Njfpm6UxFdcKY5FH8ZeCTgTo1hKSiFuIDHhFWR4UiuT8XDanQhb2TvTP0iIbKU1gpKVYvV7C9goCsLUkyyUFLMSKxOEOHjzo8XgOHjxYUVHxxBNPXHqDUjoyMnLw4MGnnnrqqaee+vznP2++cSemEirx4ELtj+zceTxscGX1SC1NlceHxcoGXCtOBuiqklEdW/V6dK08AOzI9sVjebRfrEY+XiChbjkA6OURA16R9Q0kebQfvTxKHOGVV155+OGHbTbb/v37H3rooXvuuUd/IxAIqKr65S9/eWRkZMeOHffdd5/NZlv885IkPf300+fOLeFYt956a3l5+WUvxmIxnudpYr2it6a491bTaHT1D2tlNdLIuWgUWRmxpZg75ldbC7LBv2OxWDQaJXGPXop/kCsui1ECqP/Ob05wN3hpNLr6VhVaWiX7B6ML87hzcNpc5PgE3F5piFdIkqR/U0ZcPBG06II6G1QLy1RUrzg+QbYUQSJeAbZ8INzC+ChXVGq8XW8TjUYppaJ4YXtHm4u85CfRaNZuMo0Nn80vr0GPyQBgs9k4bpVFQCEQCHg8HgDweDzBYPDSG8FgcOPGjX/xF39RUVHxve9979FHH/3yl7+8+OdlWT527NjAwMDit9ra2goKCi57MRKJEEI0bfWvX6NwKujclBeJRBKIIAUl6mxwYTpI7I7VP2wYLYW2tybJR6uzofcfjUb1L+vSK8rAGVJRG4lEEK0CgJOB/M81RiORxCJIgXt+pJ8rrzHYqJXY7OQfHxQjEUMigiRJkUgE8UtRh86QippIDNnnT0zlfaJBjkQSWpkgnrqFgdP8pp1GWxWPnggF4YLiuimf+24gD/2vySDobBAIFxPygIFf8FLxsQICpVQPdpTS+Py0adOmf/7nf9b/+7Of/exnP/vZJX/e6XR+5Stf2bdvX4I2UUqdTqfdvnov/+wMLXWo6zzFCV5Z9tYXREI2b1WCnzeCPTX0mTdVtzsf0YZ0EYvF3G53fCKcmRnnGjYXut2IVkVVGFyQ99QX2RKTeWn1mxxzk/mbthhs10pcK9D/95TqdhtSokmSJAiCG+9LCXdN8XWbEA3Q6ZxVrq3Lcxcm1B2dadhMZiZc5tosiiKltLCwUP/fPUUweFh2uNyJiAEzjqjvrFa7Ad0rEocrLS2dmJgAgKmpqbKysktv9Pb2dnV16f8timIiSTW9tAfptsSUMjpizXpptN84exJhWwnpyF6JoDR6Dl0G1hmiG10kwSwIF5YJkb2ioZCEZTqF3yIyBBa20k9FYV6m9YllQdC31WN7hY2DDS7SlaWSAokB/dSa4Hbv3n3o0CFK6aFDh/bu3QsA7e3tABCNRr/61a8ODg7KsvzYY49dc801JlvWHqTb19LDF6vwnbvEDsV20j+bnc4tj/aLVciaiPaENRE6LHiFLhFsD2avV2ArZdqDdFtpQkJiHbEafyA7AGwvzVrhKAtesSa4u+++u7+//8477xwYGLjrrrsA4P777weALVu23HXXXQ8++ODHPvaxubm55VqjxpG4DEzHxoxzZ2XIU2cChON5F3KvY61eIVY3osuJ4eJuQmwrDEDT5PEhdCHxibV6RXmNOhukMeTlq21ZXB6N4RfNa0IoKCh45JFH4l967rnnAIAQcscdd9xxxx1IhkF7ALauqTVa3Sj7h0DTYDWBkKFsK4GTAfqBBkQTDEEePcdCidcepAca1vD98kWlAESdDeIelbetlBz2ZWHIkydG+KJSXIUaAHQE6A1Va4gVwHGit14eO29b12KYUauzvZT8bjALVaNUiqozAbECU6G2VhidLBOMwaxM1yXc9AcAYsvjXSXyJPIUwW0lpD24+scyDomBREgBOoJ021pqfwAQq9ahtwq2ZenuaXbKozXpCQBArFonjWFLCkpJRzALJQXyaL/orcN9IFkrjNraHkx0ekg8LKyBb8vSJpg8dh79pOmBOeoSE5oeEo+NAa/Qpw5JWVf9y2Pn0TtgkgZ9s7R1tYnEl8FCrCi1g1Mkg1k3dYiFWLFWGE2EHQG6pr6ojljVKI+dN8KexGksJMEYnZZwrUg/LMyJ6AjSrWtvcLLgFXYe1hWSnunsC3n9Nuwnwp5p2lCQ0ETieMRqfK8AgO0lkH3LhNIYfqxYK4wmwiR6HXDpsDFUOAJtbtKRXc5NZUmdnhTKq3HNaA/CWvuiwIZXgC4czbpWAQviwCS65aA3zH0D6AcTbs3GlRQWvGKtMJoIO4LJPRGuQ293wMXWP7YV6UT2DQgVNejHELYn1ScQPLVKcJzKyA/p20qyzSu0+VmqSHxR2eofNZLkvILLc/JOlxLwGWFS4mRfrABKFf8gupB4rbCYCBUNeqZpWxIhz11B5Zg2P2uEVYmzNetCnjzWb8NeCoJkyyPCC0JZlewfNMKkxMlCrxg9J1atgzUv5aeZjqS6R8BG3Zx9XqEEfCS/gHNcPlyTcVhMhL2ztNpJnEk8fhAiehvQW//Z1wSTx84L2KvfYRl8C3RTUVIhj4EFoa0lkGUhT2JAKQPJrhyD7hW+gfQas1Y2FZHReTqv4FqRTuSx8ywUzWuFxUSYnFJGR6xahx7ytpSQ7mmqZVHQk8fOo/c6OkN0czHhk/ILsRLfK6qdRNFgHH8EcdpQGBAHjkdA0aDamVR5VIn/RMgTaC4mnVlUIclj58XKDJOMApuJ8FQotUToQw55LhHK88i5LBq0JvsG0MWByfVFdVjwCsi6PpjEQCK0vII1MnHvBLCZCJPudQAbT4SQXc6tTk8RnucKEj0GxCBOpRjysGt/ANiaTcoITVUmhkVvPa4Vp4J0S7JeIZRVqbMhLbqQXpPWSjbFCrASYRrpCK5tuFo8YmXDhUFrqGwtgVPZMlde9jHR60il9uddJUCIOossVN9aQk5lS8iTJ0f5ojJiy8M1IxWvAI4TvXUKtopqSwnJmlhBpag6G0DfZ5UEzCXCaQlCsbUNV4uH2B18oRtdFd3mJqeyZXsQIyXeqVDytT+wsUy4JYs2mFpekS6y6YlQ9g2IngwbrqbDnMWdQdrmTkmRLVatQ99AvTWLqjx5bABdKTM8T/N4KE/h8YOFnnmrm5yZoUpWDFpTGPAKRYPT07RtjcPV4hGrGtCFo+V5kMfDyHw2hAtGyqMkYC4RdqTQ9NcRqxpkH3K7Y2MWqaJl/wC6c58KwpYU4h3oXoHdBMsXoMZJerNCRcWCV5ydpdVOkp/CmAdG9DJb3KQjKxpIsn9QwC6PkoO5RNiZWq8DLrQ78FXRm4uz4fhpqirKxIjgqcM1IxVNhA4LXgH6glBW9MHk0X70RJiKfkqHhTm0kF1eYcP2iuRgLhF2BGmqtX9lgzw2kCZzkmeLOxucW5kY4Uu8RLThmtEZSqkDBgBiZYMyMQKami6TkqPNDZ1ZUB7FIur8rFBaiWvGqRBtS+2gaM7pIoKozgTSZFGStLlJFngFWE+E6YKm44lQKK9WZwNUiqbLquRoK8kG55Z9A2IlskQe0vFESEQbX1QmT46my6Tk2JIVKirZNyB6atGHq6XeMAc2WgXZ8USoq7L5wtRqEyTYSoRDYVogkpI1Hjh3ORwnVNTI/qH02JQs2fFEyMKcCEWDs7O0pTj1kFevYC8eZ0fIY8ErIB3lEQAIlfiSgpZicnaWyhmuomLEK5KDrUTYGYIt6agnxEr8NfAtWbGVUPYNiFUNuDb0ztJaJ3GkfPQFC16x3kXGIzQs41qRKix4RViG8Qhd70q9PGpA9wqHALVO0juT2eGCBa9IGrYS4algqktBOiwsE1blE1WDiQyfLcnCiSqngskcRbIYsQrfK7JDRSX78PdOdKUwezYeFnZQQFaspCgMeEXSsJUIO0NpCnmV9egDIwCgLcN3E9JYRA3PoGsiOlPWROiIXiZCXhZMEmFBE5G6mEBH9NQr48PoKqotma+XYaE8ShrGEmHKklEdsXIdEyHPndlz5RnRRHSmQxMBF1RUQXwVVYaHPHU2CJSiayJSFxLrEJudLypTJsdSv1QqtLkhs1VUlMoTI+izZ5OGoUSoayKaU9ZEAABfXEYVCf2E3tYMD3mMlHgpjtF6G44TKqrRVVRtWVAeMbBXLC1KGR0WuqOZ3hpVpsb4giJid2AbkiQMJcLeWVqTDk2EjuitRxeDZXoTTGGgAzavgG8hDZoIHbESf77MlpLM3krIyFJQZ4i2pulAFBa8YoOL+BcyeBaV7MMXE6QCQ4mwM01KGR2BATFYq5t0h2jmxjzZN4je6+gO0aaiNGgidERvveIbSM+1kqUqn8iZrKJiwSsmoyAnex7vYgRvPfoTIU+gKZNVVLLvPHrRnAosJcIQ3ZLsMYSLESvx2x3FNii2kcG5zHVu/No/bX1RAGBm8bjVTbqmLa9InnTJy3VYOIMCANrcmZwI/fjlUSowlAi7QtCaRuf2MiIchc4QthHJEQmDpvBFpbhWdIVoer2ChUSYwcuElMrjQ4IXefZsmr2iolqdmaKylK4LJkdGq6gYaZgnDUOJMF0yMJ0LWwmxG5OZ69x0YoiFORFdafUK3l1OY1FtYS5dF0yOzK39laCfyy/kHAW4ZqQ3VgDHC6WVyvhw2i6YFK0ZWx5RVVGC40JFDbYhycNKIoyqMDJPN6ZJEwH6OF2bHX2cbmvGhjw6OcpCr+NUENKyifAChAiV9ejKiMxtjSpsdMDSteH4EiyspLS5oWsa14QkUSZGeLeHCCK2IcnDSiLsmabrXURIqzmCFz/ktWXsxFE6Ncpjh7xQDMIyrS1Ia8jz4k8cbSvJ1Npf9g2yMEarO62tUQBgoTyqLSBhmYZiuFYkAyOj+VOBlUSY3g6YDgtVXnMxOTubkYeS08lRdOfWl4LS6xYiA+VRqR0cQkYeSs6CZHRknjoEKE1xNP87Eb34OygIQEtxRq6kMNInSAVWEmFnuks80I+g8w2k95prJV+AqnxyLhOFo1P4rdG0d8CAjSHLcKFnjm3E2pH9AwK+V4AxRTO+V7SVZORKiuwbRC+aU4SVRNiVpnmS8YjeOvQqDzJTIqhOTxHRxjlduGZ0hWhrOiYNxSMwMGkBMnTqkKYqEyOipxbXivRKRnWEUq82P0djyLs7WzNzK6HsGxC9DdhWpAQridCoKm98GF042pqBa+CybwDKqrGtMOSJkHe5AUCdQ34cay0m3ZkW8pTJMb6ojNjycM1Is2RUhxCxoga9bs5EbR2VJXU2IJRXYRuSEkwkwrAMkxG6rjDNzk3sDi6/UAn603vZtZKJzi2PD5Fy/ETYPZ2G83gXw8LhJJk4W1IeH2KhA2bEEyHos6gsr1g7yviwUFYFHI9tSEowkQi7p2lTMeEMOORA9NYr2EOWM3F7kOLDfyKciICqQWV++q/MwhzaVjfpmcZuVqwRFjpgFKBnmrYYkAhZkBN7HaDRDBu/x8KkodRhIhEaIRnVERlQRTcVkYEwlTJKOCr7Bgl2IuyaNqTwBwCBAYmgS8y88Xuyf1DAfiIcmKMlduIyYMcaC3JiyMA9ppk+XE2HlURoUMhjYaSWnYf6AtI7kznOTak8PgRlyE1/Q70CvTUKAK3uDBu/pzCwd6IrBK3GnITIQqyADFxJkf2D6ELi1MnyRMjCPlkAaHFnkjJCDU1yDiexG9CUXAsGJsLKevRTCUE/nCRzan+qKkrAhz5GywghsQ7vLqexiBYJG3HxxMm4RKj4M37vBDCTCCFdR4tdhuipUyZGQEPuS7YWQwY5t+xnoulvXCLknC7geHUW+UTwzAp5yuQoX4I/Rss4rwBCBE8duqQgs4pmKkXVuZBQ4sU2JFXwE+GsDNMSrU+3ZFSH2PL4QjcTwtHM2UHBwvQQAOgOGSIZ1WFBOJphiZANrzBu5RjYWCbMrK2Esn9IqKgFDj+PpAj+L9AdopuL0zxGKx4WNlBnVshj4ZwdfwQ4AhUOo67PgnC0pZicnqZahviFPD4kYnuFRuHMNG02rDxiYSWlwgEcAX+GCEcV/yC6V6QF/ERoYK8DAABEb50yjtzu2FhEBsM0puJakSgs1P5Ge4XgrZOxvaJAhLI8MhDOjEwo+/A1EefnaLmDFBjWnRUZaI1CRnVHs0MyCiwkQoM2TV+ChdrfxsG6TBGOUipPDAuerDp5dTEseAXoU4cyJOQp4/ghrytEDRIT6LCw2woyqoEkZ4VSBlhIhJ1BozYR6rBwGBPoVV4mSASV4DiXX8jlZa1kVIeRHRQtxaQ7E3ZQUFVRAn4Be9hQ1zQY6hV8URmNRbUFZOFoS3FmxAoAUPxDgsdKhOmgexpajNkYpCN66pRJBoSjGVL7M3KiitF9As7pIoJonducIIxIRrtDhsyUeRtCBG+tMm5JChKCxiJqeEYozXjJKKAnwhkJZiRal9aTVy+D2Ox8YYkS8Bl3i0TIlGN3ZD++JgJMCHlstAoyZYyI4h8SsbvlYHx5BGz0zDMlEcrjw0JFDRiodDQP5ETYPU2bjZSM6rAQ8jKl3cGCZNS3AAIH5QYfcsDCDormYnImE4SjLCwFGS0Z1RG89egqqvI84AmMMy8cZcEr0gV2IjS+8AddOIotBtuUIcJRFiSjJhT+ACB4auXxYaPvsjIFIpQ7yHnmJ47K/kF0/ZTRklEdRoSjGXFcpeIfZKFPkBawE6EpIU/01qGP1BIzQjh6QTKKfPKqWeURfhMMAFqKgf1WgeIfRB821D1NW4yUjOowcpp3RuygsJ4I04Y5IY+F1ihkgnBUCU1wjgIuz4lrhnHzJOMRvfXosgjIBOEoI5LR7hCYUDTzxUxMHM2IlZSskYwCeiI0bspoPJZwNEEYmZ/bbcyBc5fBOV3ACegTRzOgPJoc490V+JJRU7wCCBEqahXsnjn7T4Q0FlHD00KJB9uQ9ICZCGdlCBk2ZTQeYrOzMHG0uZj0sD1xlJEpoz1GzpOMhwW9TEsx6yGPkR01Rm8tvQQL2+pbmJ84Ko8PZ8eUUR3MX6MnRDcXmaS9FTz4y4Tsq6KV8SF0TYQuljNaMqojMuAVLW5yeoZp4ajMwDxJjcKZGcMlozosnEHhcQBhWziaNVNGdTAToUm9DgC4IBxFrvI2MX9UPQubCM3RT+mwsHhcKEKJnQwyPHFUGccfuTcYpiV2UmhKd5aFMyiA+WVCeXw4aySjgJwIzep1ABvbg2wc1BeQs8wKRylVGJCMmtYBAzb21cAF4Si2EcvDwmDl7mkwQTKqIzAgMgfmlwmz42D6SyA/ETab5dzMhDx2qzx1epLYHZyjANeMHnP7BOjlETAe8jSVhYPpzZGX6wjuCi0S1qLz5txuOViOFaAPG8LuHqURzETYFTJ2hG48oqdOHh8GiuxYLW5gVisvM9ABA4AuI8/jvQyuoBgIUeeQv5LmYtLDashTpny8q5SINlwzzGyYAyEiA8LR5mLSw2p5RKWYOhcUSiuxDUkbaIkwLMNUlDYYOWU0HmJ3cE6XEhw353bLwXKVx8j2WDOfCIGNSSIsq6gY8QoznwiBje4oy3NolYlhobw6aySjgJgIT8/QTUWEM3FeKwsn9LLcBGNhsPJUFBQNvIYdTL8YFk7obSkmPdPYzYplkP34QmIKcNr4KaPxiJ5a9FhRmQ+yBlNRXCuWRmYgVqQXtERopiZCR/TWo1d5TUXk3BxVmBSOsjBuu8vcwh8uPBEiSwSLbOCykWEmhaPKOH7IGw7TQhspNrE7y8JWQmC4gSQzsM8qvaAlwh5zSzzQtwdhV3l5PNQ4Sd8si87NQsgz3ytEbz366G1gWDgq+4fQW6NmSkZ1BE89+hohMNxAUhjwivSClgi7Q8aex7sYFkZvA6tVnjoTIILIOV24ZpiqiQAAAIEROTGbIY9SZXIUXTKKUDSXetW5aRpD3tDOZqwAfeUYu2hOyCPajgAAIABJREFUL3iJECPkyf5BfOFoMYvCURZmyoDpmggA4F0lVJW1+Vkzb7oYNkOeEvDxhcXEZsqYn+Ux3yuAEKGiWp7AnzjKoJyYKrI6PcmXZY9kFLASYUQB3wJtNH7KaDxcnpPLy1dnpsy86WKamXRu2T+EvmkazDpq5zIED/6whRYmd1DI/iEWNk2bXzQDgOipV/zYiZDNonliRCirIryAbUg6wUmEp2foBhcRTL85C3oZNjeNsbD6PS3BvAzVTtNDHgPd0WYmW6OMzJM0vzUKAIK3Fr08qnaSeYWGYrhWXI7sH0RX1aUdnESI4tkAIHhq0SWCzcWkl70hyyzMiegO0Wa3SUPY4xE9+CGv1A52HsYW2HILFmYs+BbAxkGZ6d1Z0VOPrq0jAJvZq5uV7JoyqoOTCBGa/gDAxhOhU4ByBzk/x5Zzy/5B9CmjaOURK0fVM3dCr+IfErG9ohvJK0RvHStewVgilP1D6LEi7SAlQtP10DqCp5YFrXxzMTB1MKEWngYAvtBcFe8iUJaCgI3d08Dg4jGlco4NYY9HKKtUZwNUlsy/dTzNxeQ0U14BoIzjD2FPO2itUawnQvTWKLBX5TEyJwLLK/jichqLaAth828dD2teoYQmOEcBl+fENQOrTwAcL5RWKhMjCLeOo4Wx8XtUVZSAXyivxjYkzSAkQkmDwTDd4EJwbs7pAl5QZ4Pm3zoe1vQyLMyUAYCuEE6fAAgRKmoVbK08a16hjOMvGwPeMgqwMX6Pte6RMjXGF5cTwZSTIU0EIRGenYWGAmJD2sEoevH7YKwNWWZhymhYhkCU1ps1hP0yWBi2wJpXyD4mDpxDeyLUx+9hx4qGAjIVpWEZ14q3UdgYwp52ENLR6RnAKvEAQPTg62X0vj87MU/24z8R9kzTpmJTh7DHw8L4PY8DKIVJZoYsK+PD6EqZySio1NQh7PGIHvzyiCPQxFKrQPYPix4rEaaDnhmC0wEDAH2kFnbIY23IMgtTRrGUMjosPBECY7sJWdhaitgXBTYOYwLGFo+V8SyUjALSEyHB6nXAhU1j+MLRFmZa/1okTKUoX1SKawZiBwzYeCIExubLsPBEiFseCRU1atBPVQXLAB2mFo9lNlaO0w7GE+E0ZmtUYOAgVgBoZqbKU/Q5EQgb2d+B+UPY4xFKvWp4Bn3IMjshT50JEBF/CDtueUR4gXdXKJNjWAbotLhZKZpB01gYwm4EZidCRYP+MGzCkIzq8EWlTAxZZqYJJrMxJwI35LEzZJkRvQwjQ9iRveLCad7IG65aipnxiqCfL3SjD2E3ArMT4cACV+UAB+q8VsGDr4pmp+/PwhHkEQVGF+h6c4ewX4boqUdvFbCjlZd9TGyaxu0TABvausZC4lugEeQGLQAzQ9iNgAOAubm5Bx544MCBAw8++ODc3Nyl95Z7PRV657hmPKWMjuipRQ957DwRKn78kHcGaQh7PIIXf/G4xknmFTqDPMwEgA2lzLQEYZnWmD6EPR6Bgd1WAgfrXaSXgdO8lXH8kXsGwQHAwYMHPR7PwYMHKyoqnnjiiUvvLfd6KvTO8ZuLkL9RwVOHHvJK7WDjwbeAawXAhcHKOTplNB4WNo0RgKYiJloFLChleqbp5mLktWuRgVgBF+bQ4nsFC0PYDUIAgFdeeeXhhx+22Wz79+9/6KGH7rnnHv295V6PJxqN/uQnPzl8+PDitz7ykY/U1Fy+rNod1G6sVMNhzKJXKaqQuo6Gw8gjtZoKxbd8C/s8GqYRUlQNz0RtTlj0rzE/Px8Oh4kpgejkBL8hn4TDmFoVzVUeGz2P7hUbC8ST4/KWfDXBz0uSND8/b7fb02uG5BuIFZbKqP8aJ/z8xgISDmPurKTOEmVyNDw7C1yq/Yr5+XlKaXJ/UOvzhZMT9H2eRL3CIKSx8/yOm3D/RjQKa91tnJ+fz6329QkAEAgEPB4PAHg8nmDw7fFjy70eD6U0HA5PTy+xsqEoCl20a/yfWqbz8vMpTfPf7Zrgy2vUyZHFtplMk4ueniXXV2CaoU4M8+XVFAAW/WtQSk37Jzozyx2oWcJbzIS4K7S5oCbFiGhDNKPJpfVMQ+L/FPQiabSBzs8AAHEW4X4jp2dgs8s8J1waQSTOYjXo50pTPZA9lW+qyaX+ekigFHWdkFJlYoSUV+F+I/92Vhiah0e2r+GfIhGDBf1zep1CKdW0tx9Qlns9HofD8YUvfGHfvn0J2iTLstPpTHsBuzYKCuaiC06Rwx0ovLVcOz1DCwuRxmYAAMDC7JRWva6wsHDxW/Pz84WFheY8EfbOKbuqbIWoYhkAWCirckRnxZJ1iDZs92j/2qMl7hWSJAHAkt9g0sTGB2Le+vReMwn6FpR3NfDoXhGrarCFg46GTSlehxBCKU3uX3VnJf2HbhX3G1FDE+H8AleZB9EGAOiPqK2lJO1hkwOA0tLSiYkJAJiamiorK7v03nKvZzyEiJ5axY+vlUfv+8vjw2IF8lKQrMEA0hD2yxC8dTL24SQtxaQbWzjKyPSQ7hCgC+vggrYO2Ss2FZGBMJVQV1EY2Wdl0PmUHADs3r370KFDlNJDhw7t3bsXANrb25d8PWuwdlDosDBl9OwsrXMSO49rBcAFvQxyebSukExG6DxqD4yF6SFhGaaitAFpCHs8LGjrbBzUF5CzM5jhQtYnb2BjkLCOA4C77767v7//zjvvHBgYuOuuuwDg/vvvX/L1rIGFs1gr80HWYAp1yDILZ2x2I528uhjBU4u+aYwjsLEI+SxW2T+ILg48PYM5hD0e0cvKLCrcqUMsnFETiIGsQWV++q8sAEBBQcEjjzwS/+pzzz235OtZg1hZH371aWwrLjj3dV6cP3cqS+psUCj1otz9Et3TTHTAAED01s+NP45txYVWwRVlaElAGR9GfyLsDuHvqNERvfXyxDBQijuGsKUYcHvm8vhw/lW3YFoA0BUyavYs6h5mPNgZsozYHVUmhoWyKuCQm5IsbCLUESpqlAD+kGXcxWMtEqaxCF+ErAlgxyuI3cE5CtTQJK4Z6JICZXwQ/YnQOK/I1URYWqnOhaiEfPgbbrtDZqDXAdhH7cRDeIEvLlenfLhm4A5aU/SRe+hD2KcB8bC2yxC9dTL2xFHcWKHOBoET0IewGxcrcjQRAiFCebUyMYJrBW6Vx4I4UKXQN0ubiphIhKD3wbBbBbh9ApmBmTLAUnkEul4Ge5lwcxHpm6Uqkl8o40OiF98rrCfC9MPC8dO4fX/ZP4SulOmfpV4HyUcdwh4PC3qZDS4yMk+jSFNEFP8g+mDlqIo/hD0eFvQyDgG8DtKPNHFU9g+xcDB9j2F9gtxNhCzsoKgtILMS2pBleRx/70TXNCuSUR0WJo4KHDQWkl4krTwLeydOT+MPYY+HhVgBF3rmOF6hMLDPalaGGYnWGrOjhhlfMx0WqjwCsBmp9U9VRQ2OC2VV5t86ntPMSEZ1BC9+nwBQhyyzcCwXO0oZHdFbr/iHFo8hNJkWN9qwBXl8EL086g4ZOIQ9dxMhC2NEAG9BSJkc5Us8RBDNv3U87KjkdURPrTI5AssMFDSNFjdO7U9jEW1+VihBHqPVM02ZKo+4/AJis6mzS89bNg1EvYzsxz93onvaqL0TkNOJsKxKnZ6kioxrBpZehoXtsaA7N0utUWLL4wuKleA4rhktxaQLo/aXx4eFiho2JKMMeQWwseGqFSlWaPOzoCq8q8T8W8fTY2TRnLuJkPCCUOpVJkdxzWhBqvJkP36vQ6NwZoatJ0IAELx1CgtaeZTyiIEFQmBMMqrDgrauuZicnkHoz8oM6KfgQtFs1MVzNxECgOCpR++ONiMJRxUGztgcDNMSOylE7s5ejuitRw95TcXkPMaQZRZOadaHsG9kYAh7PIIXP1YUiuC2kcE5s1MhC6c0g8F9gpxOhKI3d4css/BE2MOYUkZH8NSyMGS5zkn6TNfKK/5BdJU8O0PY4xE9teixAgBa3Ah1MwuxYl6ByQhdZ9iOmpxOhIKnFr3K4whsKjK9O6qpSsAnYB/AZOjqd9KInnr0Y3cAafFY9uO3Rhnsi0Jua+tk/xB6a/T0NN1YZOAQ9pxOhGJlQ26GPCXg512luEexA8shb3wYXytves+cypI6MyWUpXoUe4owNVztEnyhGwDUuRCuGSiLxyysHBtdNOd0IhTKq5kYsmy6Xkb24fc6gNUnQi4vn3M4WRiybLJXMDKEnc3yCNg4rrLFbfYTISND2I32ipxOhEQQ+eJyZWoM1wzz9TLyOL4MjAKcZmzf9CVEbz0LQ5ZN7hOwMHIPWC2PgI1hC/oOCjPdIkeGsOd0IgQAsbIefb4MQmuUgU2Eo/PUKRC3HdeKpREYEI7qQ5YVE4WjLIzRUimcY2kIezwsjN8rtoFThNF588KFPM5GeWQ9ERqKyMAOivWFZGyBRkxs0MrjQwL2LPnuaTBuV1CKsDB+zyFAZT7pN1Erz8KU0XOztDKfOJgZwh4PC0+EcEEvY97tZD/+GTURxfAh7LmeCAVvLXqVJ3Cw3kXOmDZkmVJlYhT9idC4w6ZTR/TUordGwXSJoOwfFLD3TjDbFwV94igLXmFuA0nxD6I/EZ6ZMXwIe64nQtGD3wQDc0OeEvDxhcXElmfO7Zajh7HhavEIrAxZhm6zVIpUVdTQhFCOPIS9O8Run4AvKqWKrM3P4pphenmE3zA3oTzK9UQoeGqVqTHQkA5/u4iZVR4L5/EC20+EnKOA2B3qTADXDFPLo4kRodRLeOSmJMtPhAAgVOAPWzAzVtBYRIuEBXeFObdbDhOExLmeCIlo410lSsCPa0aricJR2Yff6wC2nwiBjWELZoY8FvqiwPDeCR3RW4e+89jM8kj2D4oVtVkvGQUrEYKulfdhO7ebdJkW8hiYMjq2QG0clDIpGdURvfjzZZqLSe8MVU3xC8U/JFYiJ0KNQi97Q9jjEbz16Cf0luWByIFvwYx7yf5BAdsrwHoiNAeBgU1jG1xkeJ7GTGnQKgyM0eoKAVMH0y+GhdHbTgHKHWTAFOEoC+LA/jla4SBOJiWjOiwUzWDiQyEL47ZjKgzNGz6E3UqEIHrwtfIiB42FpghHKZUn8E8YYO0I8sUI3jr02h8AWovBnFaBzIA4kLXzeBcjevG3EgJAq1kNJBaWUXpn6LoCIhqcqaxEyNL2IOOdWwmOc/mFXJ7T6ButTDfDShkdFsojuDBSy/C7UFVRg36hvNrwO60I+30CvqiMxqLaQhjXDHNiBVwYQYXePaImeIWVCEH01CmTI6CZfvjbO2lxgwntDhbm5wJA17QZzp0KnNNFRJEJ4agJ5dHkKF/iIQLyyZDsl0dAiOCtRd9NaM7EURqLaOFZocRr9I1WxtDzeC9hJUIgNjtf6FaC2MJRN+kyftOYzMBwNWBeHKgjMDBSq9VNukwojxjxCraFxDqipw59B4U5rVF5fFioqGFDMmo9EZqCwMAauDkL4CzIwHwLIHBQjryhf3VYUEY0F5Mz01Qz2C9k/yALktEzbEtGdViIFeV5wBMYjxh7Fxa8AqzWqJmwoJXfVEQGw4YLR1k4gpzxTdOXEL34c2gLRCh3kPMGC0dl/yD6jpqBMC21k0Lk7uzqsBArwJQNV4p/EL1PIGkwGKYbjR/CbiVCAACRAb2MyMG6AtJrqHCUUnl8GH/cdib0RYEhFZXhi8cKAwcwdYVoK6vD1eIR2Tiq3oTuKAsH05+ZpusKiM34NGUlQoALx+7gO7fRa+BKaIJzFKBLRrtCtDVDngiZqP2LiaETR6mqKAGfUFFj4D0SgH3JqA5fXE5jESaEowaXR7J/AL01ak5fFKxEqMOKcLQYDJUIKmw0/TNCEwG6cFTAF44aXftbktG1QQgrKiojvSKnJKNgJUIdYrPzhSVKwIdrRqubdBm5aYwhyWhGhDw2WgVGC0ctyehaYWHx2OhEmFOSUbAS4SVYWBAy3LkZkIz6I8ARqHDgWpEoLJzQa7RwlAVxoEbhdIZIqICNWKELR/2GCUdZ8AqwWqPmw8KC0EaDhaMKAwOTTPPstMBC7W+0cFT2DaJrIs7P0XIHKWBeMqrDQqwAg+tmFs7jjakwGKabjJeMgpUIL8FCyLNx0FBAzs4a49wXpozmxMCkdCFU4nsFGCwcVcbxQ15XiLayPWU0HpERrzDylC7ZP4g+gurMDG0sNHzKqI6VCC/AiHO3uUln0BDnvjhlNN+IiydOBi0QAoDobVB8g+hH1be5SacxwlGqKkqAgSmj05ApC4Tw9sTROVwz2tyk07hE6BsUvA0GXTxBzCyarUR4AaGiVpkcRReOGqeMYKHXAZkwZTQeLr+A2GzqbBDXDOOaYMrECF/iRZeMZlaf4OLE0ayVFNBYRJufFUo8Rlw8caxEiACx2XkXC8JRMGjiKCOr392ZFfIABG+D7BvAtcG4kMfC6UsA0BWibRnlFaK3AX3QmrFe4alDl4x2hcC0hrmVCN+GhdmSBjq3bwA95I0tUJGDMuanjMbDQs/cuKPqFR/+pmmVQu8M3Zw5DXNgwytK7ZDHw+h8+t1C9jFRNJvZPbIS4duwsGlso4uMzNOoAcJRFvZOdGbI9JB4RG+9gl0e5QtQmU/OGaCiYqFPcG6WVuYzfTD9YlgYvQ2G7TyW/fhC4ogCo/N0g8EH01/CSoRvI1Y2KL4BXBsEDta7SE/alwk1TZkYRd83nXEdMAAQK/Fbo2BYq4CFvRMZtkAIANnuFSyMoDo9Qze4iGBWgrIS4duwsIMCANoMcG4l4OML3cSG3JTMxJAneOvl8SF04WhrcfoXj6ksqTNTIrpk1MSloHTBu0pAU7XwDK4ZBonMZd+AWNmQ9suuCZNjhZUI30bw1CoBH1UVXDOMOJSckaZ/ZwY+EXJ5+ZyjQAlN4JphhJxYGR8WyqqA49N72bXSGaJtJRnmFcBG3WzEmH4tEtaiC3xRWXovu1ZMjhVWInwbIoi8u0KZHMU1o60ETqU9ETLQ9KeZcwDTZbDQM281oPb//9s78/C4qvP+v+dus2i0rzPad8uSLO8rYMCYQBJi3BACtUlLIQ3NryXN0iY/wHlIW5L8WtKHPk8Smj7NVgg8dihJnLA4gMEr3pAtS5asfd+lkUajZebeuff8/hjHyLKWWe7cc0Y6n7+EdJcXz3fe95z3vOc99JSMRl2eAOjIjvqzR/rK4lpelHzJqKHHcrFAeAM0VEZUJCLdk2A0FAd2unG8hBIkslaEAg0lgqsSUKsbK7puc1X6O4jXTykatLpxqSFttPRFoOBgwngJEiTUqWv7PaW/UyS9lR4ML6xjgfAGRHsecXEXxKJhD3Yrej5TGSAv7roxqIiGk1dvhoZyYjMPOTE6t9+jQRWNLpxrQ2bC2dlQEO15xAfN4N95rGvhKA2FxJMKDM/gglgWCAkh2nOV/nayNnAISuP1XCbEqs830kfByatRmQEDvyr6OkhbARVJqFbX7CgNeYJoLCT2I9rzlIEO0lboXy+j9HcQX0a5MobLEhBnoC5YILwBSrYH6dtF8NrJqyLhpGQ0Vsr4EdNzaTi3uSIRdCwnxt4ZddIlJNv1emBo1Bm7FKQjlJzbXJGkc8dRGkpG6wwfNLNAeANiaqbqGsGKTNaMcl2LwZS+duLKhqgtDoRr7feSfSN9ZM0o13XxWOnvFDPIt9Gqc0KUDo9gObbfU91jgDEfl6TXA0PDeF/BAuGNcLyQmkm8nW6lrkkwGtpt+9toRdG5E3OgoUSwMhHpWE6sDJAf+EM05wmADlWsTkCNLuzTKVvh6+9cmapggXAuYkae0kd4mbAiEXRMdygUiLvZhR1WZI2qNlqzEe25xF1eURzqncLTOm1zpaGnzLQP+qaNa6OlOzTsq7EKkBmDWnSqoqKhIzEA1DmxwYV1LBDOhYZa+awYNOODEY8+T1P620VHvj7PCpW6MVwZnXlRPzQsHgscFOvXfk/pJ58wrx/HpfHGtdHSHdFOXhUAUJ6g2zKh0t9B3FeMeMCrQVYMmxEShYZ0B+i3Bo5ljzoxRkNNRJTunfBDSYmgjjlzpY98arTOGcV5UfA3lxnsJF5FVZmkWwJJoaCQ2PhKGWCB8GZEez4NgbAyUR+Xpwx0CWlZwBH+oOvGorgmAgCEtCx1bIh4FZVe5cTapAs0lY9PDv9R4RC99VN+kMnCx5I/xLQiEdXqcnQ0xr7BLuIJcyLLxiwQzoVPTMWeaW3aTdYMvVpv05AXBYBaZ5S7PF4Qku2+oW6yZlTqlCdQ+ttFR174zwmT2iifEQId2VG9VOFzDiKLjbPYwn9UOBDJE7BAeBMI0dBJpCJJnxJBpY/86veMD3qmcEnU1kT4Ee15xLfVVySCLmN/pa+DeE8ZAKgdw5WEC/XDRbDnEW/B4T/ENPwqKhryonBNFSwQUoDoyCfu8vyp0fAjoW+AfMlo/TguieaaCD+iI5+4y8u2oWkfHvWG+xwaNk07vTDjM7omQndoKCnQq4rK198h2glnj/yt+dmMkApECkZ5iSaI16OdrtzbRjw1ugwyYECHy0M6NVpT+juIp0YvO3FFEun9/GEjOvKJ77YCnaqolD7yCfOuSRwjoiST0e9lgXAeRDv5GSEAVIZ9HhM9NRFRvXfCj2inw+WFX0VFR01ErROvWQaqSMtSx4eXRxWV0t9OfEZY64Q1JLLlLBDOg+jI8/V3ED+UvDLsYjAahngAULMsXB6fmIq9HuJVVOFXRvicAzTURFx24srozxP4e1ERLylYE/aMEPsU3+gA8db8pFTBAuE8cNZYZDKrY8NkzQjf5Sl9baKjQC97Qsb4PhERASGBgnqZ8GeESh8VhcRR3VxtNjTkzMPPHvkGu4QUBxJEvUwKDVI7alggnB8aKiMqk9DlMF0eBTURwyT6REQI0UF+8djfaSEcWdCwlR77D2CK/jwBAIj2fB/pnHlWDPKoMBxGLyoaVAEAtWxGSBU0rIGXJaB2N/aqoT+BhkB42YmrloW/AzqaLSRIkGhC7WFUUdHQbrttAiebUQLhk8H0QXSQnxFC2KkCGlThVaHVjctItOZngXB+RDv5GaHEQUFsGFXRmqYMdBEX9/IoGfUjOvKVvjbSVsCaJAgnVaD0tomZhBPmtVHecm82oqOAuK8AgDXhJZBoUMVVFy6IRSaewKtZIJwf0U7+DArwr4GHmvr3jfTxcYnIZNHXpGC57FwOJaN+REee0t8Z1VVUWJHV8WEhNVNXi4Km1gnLoH7KDx+fjFVVmxwna0aYOyhoOLX0MrmqOhYI50fIyPGNDhCviq5MQpdHQxQ3DcXQsLxSo5w5houJ9Y0OkDUjnLG/MtAppGYinvCBWARdXiQQ7bnEq6jCUYU2NYEVmU9I1dekYLk8ygIhZSBeEFIcxE/oDcvlUZDrUDFcHSfQSz5yiPYC4tnRNcnhqYKCQuLllDAHANFRIJNWRUUiahjHaki6UPxtN0i3NyCYPWKBcEFER4FMOjsazmoQDVXyzS5styIb4ZJsPZEoqKIqCaO3JA1N2Kd90D2FS+OXUyAkXzhqEyHDippdobgLpY98/ym4licg82oWCBeEhsLRrBikaDA0E8q9NJSMXhrFVcnLx98BHaoQOFgV6lmsNFTJ1zrxqoSo7z07G9GRT3zQDABVoSaQlH7yHYmHPSBrkE1on9UyEqPeiJnkk2AQ6m5CzTOtTrqEFEckTAqc2rFl0T1kFpSoIuScudJHPmG+DFVhz/cNdWM17AMgwiNkVci9rWJWoe72BEUNuQVCYIFwEURHvtJLhcurCV7cSl+7aM+lIelfRbjRqc4IKQ51YkzzTJM1Y00Sqgm+ikodH0E8z8cS3rhw2bnc8gRIlPiEVN9wL1kz1iRBCL4CNNU31E38sDay9VMsEC4IH5cECKmuUbJmVIVUGUFJyWjN6PKpkr8Gx4kZOb7+DrJWhJYEU/ooUcWyKhn1Q8O4uSoZXQ5+X40y1MvHpyDJHAGLgqCG6PCIBcLFEB0FxBeEqkIa+yu9bWIm4VyH0wsTCs6PXX4uj7wq/EmwYGVBQ14UL68dNdcRM8mrIj8WjXvxWJDHVdKgCiA9PGKBcDEkChaEyhNR8wSWteDuUnrbpEzCY39/MfRyc3gAYib5WvkUM8SIQR9XScOOGv+BcymEpx/6IznI+woEUBn8SgoNqpA1aJ7A5SSaq/lhgXAxREcB8XSHmYf8YButYawMdAqkk2A1o8tw4A/+sT9pVQDA2uAXhOS+duKbCGtGcRWhEvmIQokqqpKDTiApfe0S6b0TDeM4z4Ys5No8sEC4GGJmgUyDuIPMjvqGe/nYBM5sjZxJgXDJidcur5oIP6KjQOknf1xlVTKqCWZBCCuyOjZI/MC5i6OwLFXBJ6Ri1ae6x8iasTaUGWEL8WWUS6OEfQXndrufeeaZvXv3HjhwwO2+4dDRJ598cvefeOGFF0iZSBAxI0cdG8RykEl3valKRpeCCYRybyvxgT+QTvpHDs5s5W3xvpE+smZUJQWnCqWvTUjLpqG52rLMEwA19TJBqUKbHMc+H/nmaqQLibmDBw+mp6cfPHgwLS3t0KFD1/+AMe7p6Tl48ODhw4cPHz785S9/maCVxOB4IS1LGegga0VVkKM8GnrKKBo0upbbdrHriJkFSk8rWRuCTYIpvW0S6aUgWI49Fq4jZhYSD4QViajRhZWASwrknlbiC4TgVwXR4RF38uTJPXv2SJK0Z8+eEydOXP/D6OioqqpPP/30gw8++L3vfW9qaoqglQSRMguJu7x1wbq8nlYxqyhy9gRC/TjOjyWZ9I8oNPSWLI5Dwx48HnBbeBoKiScUGPLg4rjlGQglCk7psgqQawuipEDpbZVIqwIAakinRoXR0dH09HQASE9Pdzo/XnNwOp3FxcVPPPFEWlraiy+++OMf//jpp5+++f7p6ekf/OAHr7766s1/euKJJ/Lz585LJiYmfD6fyWTS9f8igqhJjqmOq77yHQRtMAFPfew6AAAgAElEQVQIyFI/MJFpCUjf3p4WITZVdrnCeenExITZbEahVn2e6RHKYnmXa3mOn3yJduWjdyG8f+HwKYszn+mZrjRNCMLSI46Z7mZTyUYXUZtPj/Cr40T3BOF/twihxad7u5sX+heemprCGGtakPXfwVMeZ/qwx5vLB9TmxtPZJBSuIauKnmkkcmaz7HJF5rAfm83G80sccihgjP3Obs6HVFJS8vzzz/t/fvzxxx9//PF57+d5Pisrq6Bgnsm1zWYTxbntlsU/Efj/BmEyC2fqzxA3eE0irneLeXFLB0I85QKfLKVkhNlWxv8xhRwI69382mQg/u8WIfisIu8bPyX+f1eVBA2T0npbAF8ojNWBTlNOESJq85UJbk3SslUFduRNjw8LWEPSPAN9/2DFgP/3tcnoyoQgigF9c6f6O6y3f5Yn+onUu9GaRBy5f5lAnJiQnJw8NDSUlZU1MjKSkpJy/Q9NTU2KopSXl8OffOK895tMps9//vM7d+4M0CaPx2O1WqNoRqgVlU++1Gm1WMi2K9uQpjZMogesS1f5eroapKxia0xMmG+0WCxWqzXkQFg77vvWWt5qXZ5JMLDmTqg+k+ol265sY7p2eoDzf1KLX+kb6hFiE2MSUxa/LNLUu9Wt6chqjZqvf7BMpmWJE0NSTunNf9I0DWO85CcVPpsy8PcvqYH8I2PZO+YaseUWky2hapjSNqRisqrgtm7deuTIEYzxkSNHtm/fDgA1NTUA4PF4nn322c7OTkVRXn755R07SOYGCcKZrbwtgXgXwXXJ6GJgy4RKbyvxmgjs3zuxTIsD/dCwx3RdMroU2A4KuZeWmohluXfiOlJmEfGSgrVJ6FJgXYeU/nYhLYt4ITENquAeeeSRtra2hx9+uKOjY9++fQDwjW98AwAqKyv37dt34MCBhx56yO12L5QaXQmImQVyTwtZG9YGHAjlnhbilTKdbmwVUJqFrBWRRcoqVEiroiIRNU9AIF2HFApUIS/rQmI/NPiKNAtYhYC6Dsk9LRJpVQDAxVG8jnQgFGw223PPPTf7V++88w4AIITuv//++++/n5BhFCFmFSm9bbD+doI2FMUhpwePeSFxqfyB0tMa94n9hhi1IBdH8brldejEzYhZhTN1Z8jaYBEg3waNbt6+1DYwpafVtnOvIUYtyJUxXLB8C4n9SNlF0xeOkrYC1iXDxVGct1SbXxrKy51ecHpwIelCYtZZZmmkzAKll3C6g0OwJoBJIfbOqK5RMS3TGKsWonoUryc9xIs0IgX7asDfaG1s6W+xTEE/yeoRvD5luavCUaAMdIKmkjUjwJUUpbeVeEfii6N4bTLiSOuCBcKlEbOK5O5m0lbA+gDELfe2io484JaoFY40NCT9I42Ylq1OODUP4f0h65Kh1rXEx62ODyOE+HjCk/SVoApksvAJKcpgN1kz1iWj6pGlAqGmKgNdxFtQUaIKFgiXho9PRjyvjg+TNSOQUZ7S3SJlkk/6V48A8aR/xOE40Z5LvF6mKhEvGQjlbvILhABQTcFSkAHQsHi8PgVdXOocVaW/k09MQybCK/mU5AlYIAwIMbNIJp0HW5+y9ChPoaA4cHAGPOrS6xPLACmLfIlgVRJccXHqorpQelvFLMLdQ1QMl50rIhDS4Ctybcir4oGZxa5Relsl0qoAOiplgAXCAJGyioiP8soSUOcknlQWu0bubhazi42yaH4oGeIZgJhVRLxEMF6CNBNuci0WCeVu8sWBjS6cYUHxElkrjEDKJu8rAGDdUuNmGsrLJxXomsSryR1DeB0WCANCzCa/TChyUJ64WPdtrMi+0X7RnmegUfPw0cjyr5TxI2UV0+Dy1iRoi7s8pbeF+IxwRQ2PlN5W4qd0rV9qmVDpaSE+I7w0issTkUBBFKLAhGhApGBGCAAbUtBHC4tb6WsT0rKQQLh/VfXoSnF5gj3XN9pP/pSuBHURVajuMSx7haQMI026meoVMzzirLFcTBzxFhyL+wrAWO5tE0nXE9DjK1ggDAghKR37FHUimINQI8Diozy5u0XKIpwXBYCPRvAGOsQdaRAviOk5xA8cWJOgVi9cRaX4K2WINgiElaQKoCNnvj4FLaaKoW4+NoGz2ow06WboUQULhIEiZZPPg21MXVTcPc1iNuEh3rAHJmTy22MNQ8wuJp4zr0pQL41ibQFdyD0tEmlVaBguUTP2NwApu1ghrYrCOORW8Ihn/r8qPS3EiwmABcJohAaXV5GI2ibw9ALnq8jdLVJOibEWzcW/FESFtA2BhuFRooSTTahlYv5IqHQ3E1dF8wROMaOkZdtqey5idjHxGSECWJ+8YHZU7m6RsgmrYtoHHW5cTkfLPRYIA4WGUZ6/XubSfJNCrMi+4V7RTrhPxEcjeCMdQzxjkLJL5K4m0lbAxlR0YUGX1ySSdnkfjeCNqStLFUp3C/F6mQ0pC6pC6WqSSM8I/ZUyEh0hiA4rogGJghkhLCxuSiplLqwwlyfYc32jA8TrZTakoAvD86hCdY9hRRYS04w3aTYXhlfW8Iiz2miol9mYOr8qAGOlr414ITFVvoIFwkDhE9OwqqqupRo2RJiFxC13NRHPgAHAhWFakv7GgHhBzMhVekkvHi80PPIP/EnnqqlyecYg5hTL3YRTBRsXKBxVBru42ETOQrhShipfwQJhENAwKVzQ5XU3E891DM7AtA/nr4CeMrORcorlbsKBcEMKujSKb+4vQ0ODBdVfKbMy9k5cR8oukbsI+4r8WDTtm6e/DA2+AvzDIxYIoxEpp0TpaiRrw+oE1D2FJ27qL0PDjPD8MN6YSnr2YThidolMWhXxEjis6Or43EhIgyoaxrHDuiJ6ysxGyqFm8fimBBINqnAr0D1FRU8ZPywQBgEN4hY4qEqau5sQe2d8zkEhI5eUVX4ujGibVlgGDOhQBQBsTEXn53d5pUTsuc75YbwSVZFdrPS1ET+PaVMqOj889+BmubNRyiWsio9GcFUSFT1l/FBjSDQg5pTI3c3Ei8E23eTy5J4WMbMA8YTPPD03jDdRk+swDDE9R3WNEj+PaVMKOn/j8EgdG0I8T/z0pZUZCJHJIiSmKgNdZM24WRVY9SkDnWIm4UoZ2lTBAmEQ8LGJSDL7RgfImrE5FZ2bEwg7G4kP/OGauFeeojhOyipSSC8IbU5D54aoVQVFLs8wxJxS4jnzTancnEGz0tcmpDqQZCZlkh/aVLHy3FZ4SFSI+6ZA2NVIPOnf5sYWHtmtZK0gg5RLXhVrk1DDOPbMSsXRoAqPCg3jVJyzYzw05MztVjDzqN39sbuQO8lnywHg3DDezAJh9CLllsqdhF1eYRyaUm4oBqPB5Z0bwpvTKFK2kUg55FVhEaA04YZmC3JXk0haFZdG8aoEZF7i5ODliZRbKndeJW0FbE5FZ2elChQKfMXgDEwqdDViZIEwOKQc8uJG1/Jg19bA1Ykx7JkRUhxkrTpL2RDPSGhQBQBsmZ0q0DSZguZqZ4dWripER4FvpB97Fz0eN/JsSbshgeTtvCrlriJoDwCcHdI2UVZezgJhcEjZRUp/B1YXaPdpFFtSubN/Erfc1SjlriK+afrsEN6yUl0en5QGgNXxYbJmzB77K4NdfEIK8U3TZ4fxlpWaJ0C8INrziDcd3ZyKrvsKzTOljo+IpMvLKVQFC4TBgUwWIcWu9BI+eWdL2scuT+5oIF4MLWtQO0ZRnwjjkXJXyR2EJ4Vb0z52eXJ7vYn0wB9W9vAI/KognTPfmIIuO7GsAQDIHVel7GLgCLv9s0N4C2VVdXRZExVIuavkjgayNmxORRdGrnUSkTuvSnllZO2pGcWFschGuNEpSaTcVcSzo6UJyOnFwx6Aa3vFCAfCYQ+MybiUmk3TxkPDMqFNhMJYVDOKgQ5foWG4MMJmhNEPDaO8JBNkWFD9GAZNU7qbiZeBnRnCWylTtsFIuau8pGeECGBzKjozpIHf5ZEOhP4FwpUsCxoGzQCwNQ2dGfIHQvI7aurHcYaFujO5WCAMGlNeGT3iVvo7uPgU4idNf8gCYW6p0tuKfTf1vjMWvyq0mUnf2JDoyCNrzIdD2krOiwKAkJwBWCO+eHwtEGJMw4zww0EafQULhEEjpGVpM27VPUbWjG3p6MMhLHdeNZFeIASA04N4ezp14jYSJJmF1Eylj/Di8bY07sNBLHc2StnFwBHetXB6EG9PX+keRsotk9sJj5v9vsI30seZLHxcIlljTg/hbfT5ipUu01BASMolPyncloY+HMLe9nopfzVZS/qnYVLBxfHUidtgTHllcns9WRu2pKELI9jT3kBcFT4NqkdW7t6J60h5q7ykfUVJPJqQ8dDVK8RVAbQuo7BAGAoSBdnR8kTUP41n2hvI5zqGtG3pK3opyI+UV0bc5SVIkGNDzpYGUx7hBcLaMZxtQ4mULQUZj5S/mvjwCAFsTUODTQ3El41HvdA/jSsSqfMWLBCGgil/tbeNsLh5BLsS3OrEuJieQ9aS04N4WxoTEkj5q+W2K6StgFvSMNd9VcolPDw6PYi30TfwNx4pu0QZ6MSyl6wZ29M5vuuKqaCcrBlnhvCmVMTTpwvmv0JByltFQ2XEp3F9T8oq4ruCTg3iHfQl/Y1HSLEDxqpziKwZu/kOpymJs8WTNYOpwg8SJdGeR7zp6C0JU5bJYdGRT9aMUwManapggTAUkGQW0rIU0qfVr59uPGsmPPCf8UGtk65G8gSR8sq87YQnheumrp43k99Kf2rF109dx5S/Wiatiir31RpLyYxGuH7q1CDeQWX9FI02RQWmgnIv6TxY2kDdG1yZl+jZn+dHcEUSshI+CZEWpIJy4i4vof/KBdvqrkmSp2Z2T2GPyuqnriEVlBMfHkFnXVdq+ZyzCQ3Gq0L1KI2VMsACYciY8gm7PKzIWn/7jL30I6LiPjGAb2ED/z9Bw/DI214v5JWfHCSuCo7Jwo+poFzuaCB7oLfcXi/klp0cIGnDRyO4JB7FUtl/igXCEJEKK71tVwiKW+5sFO15Gx0Wsi7vJK1JfyJIWUWqc1CbdpMyQHUOgU8pKcwi6/JODeJbM5gqrsHZEriYeHWQ2Gn12KfIPS155atPDmqkbAC6VcECYYjwcYmcNVYhJ25ve52poPzWDETQ5akYPhzCt2QwFf0JjhdzSghurfG210kF5bdloBNEA+GJAXpdHhFMhRW+TmKqULqbxLTsbdkxHw5ea1BMhBMD+FZaB83MhYWOqbBSbq0j9Xa5tc5UVHlrBndqUNMIifuyE2daUaqZzNvpxFRY6SWnCm9rnamwcm0y6p7Co4Qq9p1e6JrEVUmUujwimAorVYLDo9Y6U1FlqhkcVnTZScZZaBhODWrUDpopNSsqMBVWeFsvk3m3psodV6X8inQLpJpR3RgZcR/vx7fZmb+7AVPhGm9rLam3+wMhj2BbGjo5QCYPdmJA25aGBOZaZmEqXOPrILbz2NtaJxVUAMBtdnS8n4yvqB3DaRaUbiHy8qVhag0didzYX+5p4ZPT/b22d9rRMULiPj6Ab2MZsBuRckuV/g4se4x/teoe09xj/r1iO+0cKVUc68e32ZljuQE+KQ0EQRvtJ/BuTZXb602FFQCwMwMdI5QzP9aPd1LsK5heQ0dIzgCO9430Gf9qb/NlU9Ea/8877egDEi5Pw3B8QNvJZoQ3gkRJyirykuiqJbfUmgorACEgpwoAODaAb2equAkhr9xHos78T4PmWADYaeeO95NZSTnWj2n2FSwQhoWpqNLbXGP8e70tl02F1wLh7XZ0fICAuOvGcJIJOaz0ipsUpqI15FRR6f95YwpqncBjhi8TjnmhxYU3pjBVzEXIL/e1EUggeZs/VoXdCilmVGv4Sgr9g2YWCMPCVFTlbTF8mXBWrgMAHFaUbCKwTPh+H76DYmUTxFRMQhUAnpYaU/Fa/88iB9vT0XHDlwmPD2jb0pHI/MpNCAUVKollQu8sVQDA7Xb0QZ/RvqJ2DCfTPWhmgg0LU3GVt/mSwbsJ5a4mPiWDi4m7/ps7HOio4eJ+vx/f4aBX2QSRclcp/R3YO2PkS1XXqDbpmt1M8nY7R0YVbIFwPriEVBBEgzdcYdU3e9AMAHc60FHDc+ZH+2j3FUyyYSEkpSPRpAx2G/lST9Ml86whHgDcYTc6EKoYjg9ozOXNCxIlKafU4NpRb3ONqWgNzDoO604Het9wl/deL76TbpdHECG/wuCcudzZKKRm+hcI/dxu5473awbvJjzap1GuCubIwsVUvNbbdNHIN3qbL5nmBEIHd2JA8xmYBrswjLNjUBqtxdDEMZes9TQaq4qmi3NUsT4F9UzhQQPnpQMz0DuN17MFwgUQCiu9Bqui+ZKpuGr2b9IskGNDF4aNi4Q+DU4M0J4noNq4qMBUYmggxLJX7mqanesAgFQz5MeicwaK+90+vIvuIR5ZDFYF+PMEpetm/4ZHsDODe6/PuPHRe73a7XaOwtPmKIEvqPC2XgbNuE/E23jRVLJuzi93OdC7BiaQzg7jgliUQnfbDRYIw8Vcss7bUotVnzGv87bWSllFyDR3LnZXJnqn18BA2KvdlcnEsyBSdonqGlUnnMa8zjfYDQgJqZlzfr/bYFX04bvY8GhhOFsCn5Bq2NmE2Dsj97aaCirm/P6uTO6dXuOC8bu9eHcm7apgvixcOFs8n2KXOxuNeZ2nsdpUuv7m3+82UNxTPvhohOpdQeThOFNxlWF5ME9jtXl+VRgaCN/pxXdnMVUshrl0vaex2ph3eVtqpNxSJJnm/H6nHX00gieNOlb8nV5tN/WDZtrtiwrMqzZ4Gz8y5l3exmrzqnlc3q0ZqNaJXbIRNnzQjzelohh2BuGimFdt8BilioUCYXE8MnFwxZCtNVfGsImDojgWCBfDVLreMF/habw4rypiBNiSalC/BZcMtU58C8U9ZfywQKgD5lUbPA1GiFsdH1EnnFJ2yTw28LAjAxmzIPR2t/aJLKacJTCXbfQ2XjRgaw1WfXJrnal07lKQn09koSM9Rri8t3vwJ9h0cClMhZVKX7s2M2nAuzwNF8yrNs77p09kcUd6jPAV7/VpOzKQmTfgVWHB3JkOSPmrfcO92qQr0i/yXL1gXrVhdon8bO7J4t7qNsjl3cNc3lLwCanIGiv3tET6RbjrqmDPnV0iP5t7stBbhri8t3s0poolQaIkFZQbUEjlG+nHsmf2vtLZ3JOF3jZqeHRPNAyao8BE+kG8YCqu8lyN+KTQU3/eXLZpob/em4Xe7on4BKTJhT0qVLJDdgLAUrbR03Ah0m/RWmoWUcWdDu7cUMQXhCYVODeE73Qwf7I05rJNnvqIq8LTcN68auNCg+aKJORRockVWW+BAd7qjo5BMxOuPphXb/bUn43oK7Dq8zbXmFdtWOiC4nhkEaBmNLLifrMb35u9wNeLcSMGqAIAfC2XzGXzZ8AAwCbCljT0boRz5u/2aVvSkE2M6EuWCebVmzwN5yOdM/fUnzOvXnB4hADuzUZvRjiBdNmJzTyUxEeBt2CBUB/Mqzd5rlaDpkbuFXJrrZCezdniF7nmU9nojQiL+w9d2qeyo0DZNCAVVvgGe7TJ8ci9Qh3tB8+0lFW0yDWfyube6Iq0KvCnspkzCQgh2Y4sNrmnOXKvwLJHbq+ft7z8Op/MRm90R3Z49Icu/Kmc6PAVTLv6wMclCSkOb1sEj1mZqTtjqdi6+DWfzuEOd0ZQ3C4Zzg9jtoMwQBAvmFatn6k/H7lXyPXnuJL1C2XA/Hw6B/2hK4Lnk2gY3uzW7suNDpdHA5aKrZ4r5yL3fM/VaimvjDNbF7lmdyZ3biiydeZ/6NLuy4kOXxEdVkYF5oqtM3VnIvd8T90Z81KB8LYM1DKB+6cjZcPbPdptdrZxIggs5Vs9dR9G7vme+nNCyWIDfwAojEPJZnQ+Yo2Hzg/jZBMqiGWBMFAsFVtmaiOpiitnzOVbFr8mRoBbM9DbESukGpiBJlfUHNzNAqFuWCq3eS6fitDDlZ5W4HgxI3fxy0QO7s3mDndFSty/7cR7cplmgsBcvtnbVIPliBwMqE1NqH3tXP7c1iE3c38u+m3EUgW/7dT2sOlgMEh5qzW30zc6EJGna9rMlbOWym1LXnh/HvfbzkgNj37Xqd2TxUXLgVxRYmY0INrzgOOV3tZIPHym9rRlzfZArrw/F/2mIyIuz6vC293aZ6Ik10EJnMUm5hRHaGf9zJWzYtEaEJauUbk/j/tNR6Rc3m868P15TBXBgJB59eYIpQq8bXVCYhqfkLrklfflcEd6NG9kCht+06Hdnxc1wyMmXz2xVO2YqTkZiSfPXD5lWbMjkCvvzebODEXkaPJ3evGaJHbiRNBYqm6JlCpqTpoqlh74A8CGFORRI9Jipm4Me1TYwE6cCBLLmgiqwlJ1SyBXplugMjEiDbjHvHBmCN8bDTsI/USNoVGBperW6QiI2zfYrc1MSbmrArk4RoC7MiOSHX2tXXsgnwkmaCyVOzz157FP5618mmdKbq2TFt5BOBsE8EA+eq1df5f3v+34z/LYdpqgMZWuUwa7Vdeozs/FeObyqQADIQA8kM+91q6/rzjcpd3p4KJoOw3za3oiZReDT1H62vV97PSl45aqWxavDJzN5/LRwTadxe1V4fddLBCGAh+XKDryde+34Kn90FRctXhl4GweyOd0VwUAHGrTHixgqggaxAuW8i26Twq9bXWcLeHmc0gW4rP56HCn/tnRQ23ag/nRNDpiCtYVhCxrb5uu/kDfp05XH7Ou2xn49Z/O4T4cxCMePW14u0dbk4TsgXpdxg1Y1+2ciYAqLOtuC/z6LWloRoUap56TwhonnlZhS1o0uTx6sKzbqbuvmKk+Zg1GFQ4rqkzSuXZ0xAOnB/Gno6qYIJpsjQqsG+6Yqf5Ax7YRSm8rqIqUWxr4LTEC3JvN/VrXjMcrrfjPC5laQsSy9lbP1QvYq9tp8dqkS+5ssAS2QOgHATxcgF5p0VMVr7ZqDxewvGiImEvXqaMDOtaOYtU3XXPSuv6OoO7680LulVY9h0evtWv3ZkdTXhRYINQd0ZGPTBZvu24766fPv2fdcEfgeVE/+4u4l/VzeS4Z/tjD8qKhw8XESfkVM5dP6/XA6eoPzOVbbj5qbnH2FXGvtGK9dtZrGF5pwfuKmCpCheMt626bvnBUr+d5r14Q07L4pLSg7nogn/tjj6bjzvqXWrT90aaKKDM3KrBuumv67Dv6PEtTp6vft27cFex9d2eitgncMqGPzzvUpt2VySUG53UZNxCzedfUeZ1UATB9/t2YTXcFe1d5IsqwwFGdqgTf68NpFihPZBPC0LFu2jV9/l29EkhTZ9+xbg5aFUkmuCtTtwRSkwu3TeC7qT+Sfg4sEOqPdeOumdrTuuTBZurPCymZgS99X0fgYH8R9/MmfcT98ybtL4qZVMLCXL5V6Wv3OQfDf5TS165OuUzFa0O499ES7mf6qeIvS5gqwkLKLkGi5G2rC/9R2qTL21JjWRvEAuF1Hi3hftaojyp+0aTtL+KEaNNFtNkbDfBxiabCyumLx8N/1NSHb8Vs/URo9/5VKffzJk0JW95XxnD3FNzLGm2HBxJE64Y7p8+8Hf6jpj58K2bz3cFmy/08XMi91a2FX0g16oW3e7R9bNk4bGK23jP14VvhP2fq/LuWim2BVxHP5hNZqHsK6sLeZurT4JfN+LHS6FNF9FkcFcRsu3fq9BthPkQdG5I7GkIb4gFAWQIqjkPh9+D+zwbtsVLEszgYNjHb7p06+0es+sJ5CJY909UfhDw8SjTBnlzul83hquIXTdpncli2XAesm3Z5rpzTpibCegrGU6ffjNn+ydDu5hE8Vop+0hCuKn7XqRXHw6qE6HMWLBBGBHPZRm3KLXc1hvOQyVNvWDfdFWxBxGy+vJr7UX1Y4nYr8Eqr9sUoHOJRiJiRI6RlzYTXkHb6wlFTYUUgDbQW4suruRcbwjqMQsPwYoP2N2VMFTrAWWMta7ZPhZcq8DRWI5NZyisL+QlfLOVeadXc4XV9+GF9tKoiKo2OAhCy3Xrf5LHfhvwALHunzrxtu+W+cKz4szyueQIuh7F17GeN2u5MLjMm+oZ4dGK7dU84qgCMJ4//1nbrnnBs2JyKUszwhzB6D/2+S0sxs+2DumG7dc/kid+Hc5rp5LFwVZEZg+7OCmulsMaJWybgz6Kz62xUGh0VWLfe47n6keocCu32qXN/NBWUCyn2cGwQOfi7cu75yyGK26fBf1zRvlrBRKIbloqt2qRLDnV3jafhPAiSqbgqTDO+VsE9Xxu6y3u+VvsaU4V+iFmFQqpj+uKx0G5X+juU3lbrhuC2D97M1yq4/7ii+ULVxfOXtb8rj5rjJuYQnVZHA5zZGrPtXvf7r4VwL1Z9k0dfi931YPhmfGkV91aP1u4OZVL4apuWa2MDf13huNg7H5h452Bod0+8czBOD1V8Np/rm4aTA6Go4sQA7p+Gz7JNpboSu+tB97uHQttH4X7vkG3n/SiAQ0gWZ1MqyrPBqyH14Wt347e6tS+tilZVRKvdUUHs7Xunqz9Qx0eCvXH6/LtCamaAXbYXJ16CJ8q4714KWtwqhu9ews+s48O3gTEb6+bdSl+73N0U7I2exmpteiLwfsqLwCP4v1Xcdy6Gkov7p4vq/63iWPGUvphXbUCiaeZy0K1HfUM9nqvVYa6hXOeZdfxzFzU1+HD83CXtb1Zz8ZIuVhCABcIIwtkSYrbeM3HkV0HdhRV54sgrcfd+QS8zvlbB/65Ta3QFp+5DPSaHFXY5mMPTGSSIcXc/PPGHXwR3G8YTb/wy7p79wOnznf1CMdfhhveC3Fx/tA93TgLbVBoJ4j75Bdeb/xPsSqHrzV/G3r4XmfQ5He1OB3JYIdj9x00u/LtO7WsVUTxoZoKOLLF3PeipO6P0dwR+y+QHr0s5pVKeDtNBP4km+Ic1/D+eC0Lck0lKE0IAAAqVSURBVAr8a6P1+5uYPCKCdcvdvrEhT8P5wG+Zrv4AAFtD3UtzMyIH393E/cNZNfDhv4rh62fV726Mvu3SUYF51QY+PmXydBB7CuX2ernjqm3nXh3N+H+b+Wertclgykf/4Zz2j2v4qN5LwxQdWTiLLfaefeOv/SjA7L/qHHJ/8Hr8Zx7T14wny7mr4/iN7kB93neq1Z2pyqZUNh2MCIgXEvZ+afz1/8RKQB0eNc+06/c/Tdj7RGib6Bfic/lcnAT/GfDusRcbtAQJWMvZyJGw90sTb7+sTY4HdLWmjr32o/jPPIZEPTOSm1LRXQ70nepAJ6ZvdOOr4/jJ8uhWRXRbHxXYtn8Kq77JQPbXYzx26D9i7/iskJyhrw0mHl7cwX/5lDoegOM9O4RfbtEOlE3rawNjNuayTWJW4cTbLwVysevwf5tXb5byV+tuxos7+O9Uqx0B1FJ1uPE/Vasv7oji9Bf9iPa8mC27x177USAXu4++xscmWNffrrsZ/7qZf7lFOze8tCpcMnz5lPriDt4U5bpggTDyIJS07xsTb728ZILU/cHrmncm9s4HImHFnQ60Jxf99YklMmEuGfZ/oP5oB58s6X+IK2M2iQ/87fRH73ubLi5+2UzNSW/TxYQ9X4yEDWUJ6JtV/L4P1MVb8Ska7PtA/VYVH41NQ6KLuHse8Q12T509svhlcsfVyWO/TXzo7yNhQ5oFfrid3/e+uviRFBjgiyfUz+SgO6O/kuDjQKiq6qOPPjr7b263+5lnntm7d++BAwfcbrfhti0fhNTMhL1fGv3v76jusYWu8TScn3z/f5O/8C3gIjW4+rfNfOck/peLC/o8RYPPH/V9KgdF6a7Y6IKLiUt65JvOl/7VN9i90DVKT8vYr3+Y/JdP61UNcTNfq+RSzeiJkwuOkDDA35xSU83oq5VMFREHiVLyXz7t+v3PF+nErTqHRn/xL4kPfzWcBkOL89l87pPZ6PNHfYuMkJ67qHVO4n/bEuWTQQC4Hghff/31r3zlKz09PbP/dvDgwfT09IMHD6alpR06dIiEecsH64Y7rFvuHvnRt+bdTeGpP+/81Q+S/+rbfGJwZ4kFhYmH390t/E+z9v2aedQ944MH31MtPHp+83JQdlRgKqyM/8xjwy8+NW+2QO5qGvmvbyd+/kkxqyhyNiCAl2/n68fx356ep3BGxfC3p9W6Mfzy7WzHhEEI6dnJX/jm6M/+xdtSe/NffSP9wz/+ZuydnzOv3hxRM36whTfz6MH31Jn5muN+v0b7ZbP2u7sF87LwFtcCYUFBwf79++f87eTJk3v27JEkac+ePSdOnDDctuVG3N0PW7fcPfTvT07POsJe80y5fv/TsYMvpDz+rI6VoguRYYFjn+Z/3a498J7aOfmx2zs1iLce9sWKcHAXz2oCjcS66a74zzw2/KNvTp44fL0fN1Zk99HXRv7rQOLnn7RUbo+0DTYRjtwrtLjwrjd9s48gqBvDu970NbvwH+8VouvA8WjHVLIu+S++5fzldyfefvnjA900derskaEXvhp75+dst4XVUC0QBA4O7eJjRdh62Hdq8GNVdLjxZ99VD7Vpxz7NZ0QqT2E0CM+qZty9e/c773x8duh999332muvmUwmr9f7uc997vDhwzffv3HjRpPJlJycfPOfnnrqqdLS0jm/HBsbs1qtJlM0V9qGh9bT7D3yEnaN8I4CrHi13jZh9WZx10MoJt4wG7waeuGq+F+tYqFNy7BA4wRSNPRUufeB7I/HfkNDQ6mpqUjXMkXGQmjDvfIfX9L62rjMQtA0ra+Nzy0Td+/jktIXv1GW5cnJyaSkJB1swPDfreK/XxXTLZAbgzun0OAMfHWV8nihwiaD4TM1NYUxttlsgd+CJ5zyO79SW2o4RwEIotbbyqVlSbv3c/a8iJk5D691C9+rNwkIl8bhvmlon+L+ukj5+1LFxOlznnCkiYuL4/kl5q3CnOA3G4yx3w9ijDVt/lSxJEm7du0qK5un63l2drbFMnfA4PF4LBbLSg6EULwmpvjf1NF+30AXEiUxuwRZYgw2wQLw7Ab41lrto1E04oV8G1QmaghEgI+H/Waz2WKxsEBoEDlFMY9/R5tw+npbAPFCZiEXmxDIfTzPq6p68xctNL5SCf+nHF90op5plB0DaxOxwAkAgi4PX+GoqooxDu6TsmRa9/8jnnYr3c1Y9Yn2fC4xUouCi/BICewr1urGUZsbpZlhfbJm5nmAqEmJBuLEhIWiIAAkJycPDQ1lZWWNjIykpKTMe40oirt27dq5c2eANplMJrPZvKIDoZ/MfMjMJ2uCGWDXwiHY/0mxQGgoZgekOYK6g+M4RVHMZrOOVtwaytmujCXw+XwY41A+KbPZkkQg/s1hswU2h3UEANXMvxxUU1MDAFu3bj1y5AjG+MiRI9u3R3yhgsFgMBgM45k/EH7jG98AgEceeaStre3hhx/u6OjYt2+fsYYxGAwGg2EEN2T/r6dJ/T/YbLbnnntO3/ddvny5tLTUbl++c+zlwvHjxx944AGWGqUcl8t16dKl3bt3kzaEsQSdnZ0+n6+qKtyzJBmRwOhK+X/+53++cOGCwS9lhMD+/ftlOaBOmAyCNDQ0PPXUU6StYCzNr3/965deCqijHsN42JYxBoPBYKxoWCBkMBgMxoqGBUIGg8FgrGjC3Srr8/n8ey0CZHx8vK6uLi4uLsz3MiINxvjEiROSpOdRZwzdqampcbvdx44dI20IYwk6OjpmZmbYJ2U8GzdujIlZomnJDS3WQuDVV1/94Q9/KAiBBtTJyUmz2Rz49QxSjI+PJyQE1NyEQRBVVaenp2NjY0kbwlgCj8cTdGcZhh789Kc/LSpaom19uIGQwWAwGIyohq0RMhgMBmNFwwIhg8FgMFY0LBAyGAwGY0XDAiGDwWAwVjQGBUK32/3MM8/s3bv3wIEDbrfbmJcyQuDJJ5/c/SdeeOEF0uYw5kFV1UcffdT/M/tmUcvsjwnYN4tuDNrGcPDgwfT09G9/+9s/+clPDh069NhjjxnzXkZQYIx7enoOHjzoL/Je8lhnhvG8/vrrR48e7enp8f8n+2bRyZyPiX2zKMegGeHJkyf37NkjSdKePXtOnDhhzEsZwTI6Oqqq6tNPP/3ggw9+73vfm5qaIm0RYy4FBQX79++//p/sm0Uncz4m9s2iHIMC4ejoaHp6OgCkp6c7nU5jXsoIFqfTWVxc/PWvf/1Xv/pVTEzMj3/8Y9IWMeaydu3arVu3Xv9P9s2ikzkfE/tmUY5BqVGMsf9kO4yxpmnGvJQRLCUlJc8//7z/58cff/zxxx8naw9jSdg3Kypg3yzKMWhGmJycPDQ0BAAjIyMpKSnGvJQRLE1NTVeuXPH/LIqiKIpk7WEsCftmRQXsm0U5BgXCrVu3HjlyBGN85MiR7du3G/NSRrB4PJ5nn322s7NTUZSXX355x44dpC1iLAH7ZkUF7JtFOQYFwkceeaStre3hhx/u6OjYt2+fMS9lBEtlZeW+ffsOHDjw0EMPud1ulsChH/bNigrYN4tyWNNtBoPBYKxoWGcZBoPBYKxoWCBkMBgMxoqGBUIGg8FgrGhYIGQwGAzGioYFQgaDwWCsaP4/Qeq3HdRFH9oAAAAASUVORK5CYII=", "text/html": [ "\n", "\n", "\n", " \n", " \n", " \n", "\n", "\n", "\n", " \n", " \n", " \n", "\n", "\n", "\n", " \n", " \n", " \n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "0\n", "\n", "\n", "5\n", "\n", "\n", "10\n", "\n", "\n", "15\n", "\n", "\n", "-1.0\n", "\n", "\n", "-0.5\n", "\n", "\n", "0.0\n", "\n", "\n", "0.5\n", "\n", "\n", "1.0\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "y1\n", "\n", "\n", "\n", "y2\n", "\n", "\n" ], "image/svg+xml": [ "\n", "\n", "\n", " \n", " \n", " \n", "\n", "\n", "\n", " \n", " \n", " \n", "\n", "\n", "\n", " \n", " \n", " \n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "0\n", "\n", "\n", "5\n", "\n", "\n", "10\n", "\n", "\n", "15\n", "\n", "\n", "-1.0\n", "\n", "\n", "-0.5\n", "\n", "\n", "0.0\n", "\n", "\n", "0.5\n", "\n", "\n", "1.0\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "y1\n", "\n", "\n", "\n", "y2\n", "\n", "\n" ] }, "metadata": {}, "execution_count": 5 } ], "cell_type": "code", "source": [ "using Plots\n", "x = range(0, stop=6π, length=1000)\n", "y1 = sin.(x)\n", "y2 = cos.(x)\n", "plot(x, [y1, y2])" ], "metadata": {}, "execution_count": 5 }, { "outputs": [], "cell_type": "markdown", "source": [ "### Custom processing\n", "\n", "It is possible to give Literate custom pre- and post-processing functions.\n", "For example, here we insert two placeholders, which we will replace with\n", "something else at time of generation. We have here replaced our placeholders\n", "with `z` and `1.0 + 2.0im`:" ], "metadata": {} }, { "outputs": [ { "output_type": "execute_result", "data": { "text/plain": "1.0 + 2.0im" }, "metadata": {}, "execution_count": 6 } ], "cell_type": "code", "source": [ "z = 1.0 + 2.0im" ], "metadata": {}, "execution_count": 6 }, { "outputs": [], "cell_type": "markdown", "source": [ "### Documenter.jl interaction\n", "\n", "In the source file it is possible to use Documenter.jl style references,\n", "such as `@ref` and `@id`. These will be filtered out in the notebook output.\n", "For example, here is a link, but it is only\n", "visible as a link if you are reading the markdown output. We can also\n", "use equations:\n", "\n", "$$\n", "\\int_\\Omega \\nabla v \\cdot \\nabla u\\ \\mathrm{d}\\Omega = \\int_\\Omega v f\\ \\mathrm{d}\\Omega\n", "$$\n", "\n", "using Documenters math syntax. Documenters syntax is automatically changed to\n", "`\\begin{equation} ... \\end{equation}` in the notebook output to display correctly." ], "metadata": {} }, { "outputs": [], "cell_type": "markdown", "source": [ "*This notebook was generated using [Literate.jl](https://github.com/fredrikekre/Literate.jl).*" ], "metadata": {} } ], "nbformat_minor": 3, "metadata": { "language_info": { "file_extension": ".jl", "mimetype": "application/julia", "name": "julia", "version": "1.2.0" }, "kernelspec": { "name": "julia-1.2", "display_name": "Julia 1.2.0", "language": "julia" } }, "nbformat": 4 }