Julia interface to hypre linear solvers (https://github.com/hypre-space/hypre)
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

300 lines
11 KiB

module HYPREPartitionedArrays
using HYPRE.LibHYPRE: @check, HYPRE_BigInt, HYPRE_Complex, HYPRE_IJMatrixSetValues,
HYPRE_IJVectorGetValues, HYPRE_IJVectorInitialize, HYPRE_IJVectorSetValues, HYPRE_Int
using HYPRE: HYPRE, HYPREMatrix, HYPRESolver, HYPREVector, Internals
using MPI: MPI
using PartitionedArrays: PartitionedArrays, AbstractLocalIndices, MPIArray, PSparseMatrix,
PVector, SplitMatrix, ghost_to_global, local_values, own_to_global, own_values,
partition
using SparseArrays: SparseArrays, SparseMatrixCSC, nonzeros, nzrange, rowvals
using SparseMatricesCSR: SparseMatrixCSR, colvals
##################################################
# PartitionedArrays.PSparseMatrix -> HYPREMatrix #
##################################################
function Internals.to_hypre_data(
A::SplitMatrix{<:SparseMatrixCSC}, r::AbstractLocalIndices, c::AbstractLocalIndices
)
# Own/ghost to global index mappings
own_to_global_row = own_to_global(r)
own_to_global_col = own_to_global(c)
ghost_to_global_col = ghost_to_global(c)
# HYPRE requires contiguous row indices
ilower = own_to_global_row[1]
iupper = own_to_global_row[end]
@assert iupper - ilower + 1 == length(own_to_global_row)
# Extract sparse matrices from the SplitMatrix. We are only interested in the owned
# rows, so only consider own-own and own-ghost blocks.
Aoo = A.blocks.own_own::SparseMatrixCSC
Aoo_rows = rowvals(Aoo)
Aoo_vals = nonzeros(Aoo)
Aog = A.blocks.own_ghost::SparseMatrixCSC
Aog_rows = rowvals(Aog)
Aog_vals = nonzeros(Aog)
@assert size(Aoo, 1) == size(Aog, 1) == length(own_to_global_row)
# Initialize the data buffers HYPRE wants
nrows = HYPRE_Int(length(own_to_global_row)) # Total number of rows
ncols = zeros(HYPRE_Int, nrows) # Number of colums for each row
rows = collect(HYPRE_BigInt, ilower:iupper) # The row indices
# cols = Vector{HYPRE_BigInt}(undef, nnz) # The column indices
# values = Vector{HYPRE_Complex}(undef, nnz) # The values
# First pass to count nnz per row (note that global column indices and column
# permutation doesn't matter for this pass)
@inbounds for own_col in 1:size(Aoo, 2)
for k in nzrange(Aoo, own_col)
own_row = Aoo_rows[k]
ncols[own_row] += 1
end
end
@inbounds for ghost_col in 1:size(Aog, 2)
for k in nzrange(Aog, ghost_col)
own_row = Aog_rows[k]
ncols[own_row] += 1
end
end
# Initialize remaining buffers now that nnz is known
nnz = sum(ncols)
cols = Vector{HYPRE_BigInt}(undef, nnz)
values = Vector{HYPRE_Complex}(undef, nnz)
# Keep track of the last index used for every row
lastinds = zeros(Int, nrows)
cumsum!((@view lastinds[2:end]), (@view ncols[1:(end - 1)]))
# Second pass to populate the output. Here we need to map column
# indices from own/ghost to global
@inbounds for own_col in 1:size(Aoo, 2)
for k in nzrange(Aoo, own_col)
own_row = Aoo_rows[k]
i = lastinds[own_row] += 1
values[i] = Aoo_vals[k]
cols[i] = own_to_global_col[own_col]
end
end
@inbounds for ghost_col in 1:size(Aog, 2)
for k in nzrange(Aog, ghost_col)
own_row = Aog_rows[k]
i = lastinds[own_row] += 1
values[i] = Aog_vals[k]
cols[i] = ghost_to_global_col[ghost_col]
end
end
# Sanity checks and return
@assert nrows == length(ncols) == length(rows)
return nrows, ncols, rows, cols, values
end
function Internals.to_hypre_data(
A::SplitMatrix{<:SparseMatrixCSR}, r::AbstractLocalIndices, c::AbstractLocalIndices
)
# Own/ghost to global index mappings
own_to_global_row = own_to_global(r)
own_to_global_col = own_to_global(c)
ghost_to_global_col = ghost_to_global(c)
# HYPRE requires contiguous row indices
ilower = own_to_global_row[1]
iupper = own_to_global_row[end]
@assert iupper - ilower + 1 == length(own_to_global_row)
# Extract sparse matrices from the SplitMatrix. We are only interested in the owned
# rows, so only consider own-own and own-ghost blocks.
Aoo = A.blocks.own_own::SparseMatrixCSR
Aoo_cols = colvals(Aoo)
Aoo_vals = nonzeros(Aoo)
Aog = A.blocks.own_ghost::SparseMatrixCSR
Aog_cols = colvals(Aog)
Aog_vals = nonzeros(Aog)
@assert size(Aoo, 1) == size(Aog, 1) == length(own_to_global_row)
# Initialize the data buffers HYPRE wants
nnz = SparseArrays.nnz(Aoo) + SparseArrays.nnz(Aog)
nrows = HYPRE_Int(iupper - ilower + 1) # Total number of rows
ncols = zeros(HYPRE_Int, nrows) # Number of columns for each row
rows = collect(HYPRE_BigInt, ilower:iupper) # The row indices
cols = Vector{HYPRE_BigInt}(undef, nnz) # The column indices
values = Vector{HYPRE_Complex}(undef, nnz) # The values
# For CSR we only need a single pass to over the owned rows to collect everything
i = 0
for own_row in 1:size(Aoo, 1)
nzro = nzrange(Aoo, own_row)
nzrg = nzrange(Aog, own_row)
ncols[own_row] = length(nzro) + length(nzrg)
for k in nzro
i += 1
own_col = Aoo_cols[k]
cols[i] = own_to_global_col[own_col]
values[i] = Aoo_vals[k]
end
for k in nzrg
i += 1
ghost_col = Aog_cols[k]
cols[i] = ghost_to_global_col[ghost_col]
values[i] = Aog_vals[k]
end
end
# Sanity checks and return
@assert nnz == i
@assert nrows == length(ncols) == length(rows)
return nrows, ncols, rows, cols, values
end
function Internals.get_comm(A::Union{PSparseMatrix{<:Any, <:M}, PVector{<:Any, <:M}}) where {M <: MPIArray}
return partition(A).comm
end
Internals.get_comm(_::Union{PSparseMatrix, PVector}) = MPI.COMM_SELF
function Internals.get_proc_rows(A::Union{PSparseMatrix, PVector})
ilower::HYPRE_BigInt = typemax(HYPRE_BigInt)
iupper::HYPRE_BigInt = typemin(HYPRE_BigInt)
map(partition(axes(A, 1))) do a
# This is a map over the local process' owned indices. For MPI it will
# be a single value but for DebugArray / Array it will have multiple
# values.
o_to_g = own_to_global(a)
ilower_part = o_to_g[1]
iupper_part = o_to_g[end]
ilower = min(ilower, convert(HYPRE_BigInt, ilower_part))
iupper = max(iupper, convert(HYPRE_BigInt, iupper_part))
end
return ilower, iupper
end
function HYPRE.HYPREMatrix(B::PSparseMatrix)
# Use the same communicator as the matrix
comm = Internals.get_comm(B)
# Fetch rows owned by this process
ilower, iupper = Internals.get_proc_rows(B)
# Create the IJ matrix
A = HYPREMatrix(comm, ilower, iupper)
# Set all the values
map(local_values(B), partition(axes(B, 1)), partition(axes(B, 2))) do Bv, Br, Bc
nrows, ncols, rows, cols, values = Internals.to_hypre_data(Bv, Br, Bc)
@check HYPRE_IJMatrixSetValues(A, nrows, ncols, rows, cols, values)
return nothing
end
# Finalize
Internals.assemble_matrix(A)
return A
end
############################################
# PartitionedArrays.PVector -> HYPREVector #
############################################
function HYPRE.HYPREVector(v::PVector)
# Use the same communicator as the matrix
comm = Internals.get_comm(v)
# Fetch rows owned by this process
ilower, iupper = Internals.get_proc_rows(v)
# Create the IJ vector
b = HYPREVector(comm, ilower, iupper)
# Set all the values
map(own_values(v), partition(axes(v, 1))) do vo, vr
o_to_g = own_to_global(vr)
ilower_part = o_to_g[1]
iupper_part = o_to_g[end]
# Option 1: Set all values
nvalues = HYPRE_Int(iupper_part - ilower_part + 1)
indices = collect(HYPRE_BigInt, ilower_part:iupper_part)
# TODO: Could probably just pass the full vector even if it is too long
# values = convert(Vector{HYPRE_Complex}, vv)
values = collect(HYPRE_Complex, vo)
# # Option 2: Set only non-zeros
# indices = HYPRE_BigInt[]
# values = HYPRE_Complex[]
# for (i, vi) in zip(ilower_part:iupper_part, vo)
# if !iszero(vi)
# push!(indices, i)
# push!(values, vi)
# end
# end
# nvalues = length(indices)
@check HYPRE_IJVectorSetValues(b, nvalues, indices, values)
return nothing
end
# Finalize
Internals.assemble_vector(b)
return b
end
function copy_check(dst::HYPREVector, src::PVector)
il_dst, iu_dst = Internals.get_proc_rows(dst)
il_src, iu_src = Internals.get_proc_rows(src)
if il_dst != il_src && iu_dst != iu_src
# TODO: Why require this?
msg = "row owner mismatch between dst ($(il_dst:iu_dst)) and src ($(il_src:iu_src))"
throw(ArgumentError(msg))
end
return
end
# TODO: Other eltypes could be support by using a intermediate buffer
function Base.copy!(dst::PVector{<:AbstractVector{HYPRE_Complex}}, src::HYPREVector)
copy_check(src, dst)
map(own_values(dst), partition(axes(dst, 1))) do ov, vr
o_to_g = own_to_global(vr)
il_src_part = o_to_g[1]
iu_src_part = o_to_g[end]
nvalues = HYPRE_Int(iu_src_part - il_src_part + 1)
indices = collect(HYPRE_BigInt, il_src_part:iu_src_part)
values = ov
@check HYPRE_IJVectorGetValues(src, nvalues, indices, values)
end
return dst
end
function Base.copy!(dst::HYPREVector, src::PVector{<:AbstractVector{HYPRE_Complex}})
copy_check(dst, src)
# Re-initialize the vector
@check HYPRE_IJVectorInitialize(dst)
map(own_values(src), partition(axes(src, 1))) do ov, vr
o_to_g = own_to_global(vr)
ilower_src_part = o_to_g[1]
iupper_src_part = o_to_g[end]
nvalues = HYPRE_Int(iupper_src_part - ilower_src_part + 1)
indices = collect(HYPRE_BigInt, ilower_src_part:iupper_src_part)
values = ov
@check HYPRE_IJVectorSetValues(dst, nvalues, indices, values)
end
# TODO: It shouldn't be necessary to assemble here since we only set owned rows (?)
# @check HYPRE_IJVectorAssemble(dst)
# TODO: Necessary to recreate the ParVector? Running some examples it seems like it is
# not needed.
return dst
end
######################################
# PartitionedArrays solver interface #
######################################
# TODO: Would it be useful with a method that copied the solution to b instead?
function HYPRE.solve(solver::HYPRESolver, A::PSparseMatrix, b::PVector)
hypre_x = HYPRE.solve(solver, HYPREMatrix(A), HYPREVector(b))
x = copy!(similar(b, HYPRE_Complex), hypre_x)
return x
end
function HYPRE.solve!(solver::HYPRESolver, x::PVector, A::PSparseMatrix, b::PVector)
hypre_x = HYPREVector(x)
HYPRE.solve!(solver, hypre_x, HYPREMatrix(A), HYPREVector(b))
copy!(x, hypre_x)
return x
end
end # module HYPREPartitionedArrays