# Example translated from C to Julia based on this original source (MIT license): # https://github.com/hypre-space/hypre/blob/ac9d7d0d7b43cd3d0c7f24ec5d64b58fbf900097/src/examples/ex5.c # Example 5 # # Interface: Linear-Algebraic (IJ) # # Sample run: mpirun -np 4 julia ex5.jl # # Description: This example solves the 2-D Laplacian problem with zero boundary # conditions on an n x n grid. The number of unknowns is N=n^2. # The standard 5-point stencil is used, and we solve for the # interior nodes only. # # This example solves the same problem as Example 3. Available # solvers are AMG, PCG, and PCG with AMG or Parasails # preconditioners. using MPI using HYPRE.LibHYPRE # LibHYPRE submodule contains the raw C-interface generated by Clang.jl function main() # Initialize MPI # MPI_Init(Ref{Cint}(length(ARGS)), ARGS) MPI.Init() comm = MPI.COMM_WORLD myid = MPI.Comm_rank(comm) num_procs = MPI.Comm_size(comm) # Initialize HYPRE HYPRE_Init() # Default problem parameters n = 33 solver_id = 0 print_system = false # TODO: Parse command line # Preliminaries: want at least one processor per row if n * n < num_procs; n = trunc(Int, sqrt(n)) + 1; end N = n * n # global number of rows h = 1.0 / (n + 1) # mesh size h2 = h * h # Each processor knows only of its own rows - the range is denoted by ilower # and upper. Here we partition the rows. We account for the fact that # N may not divide evenly by the number of processors. local_size = N รท num_procs extra = N - local_size * num_procs ilower = local_size * myid ilower += min(myid, extra) iupper = local_size * (myid + 1) iupper += min(myid + 1, extra) iupper = iupper - 1 # How many rows do I have? local_size = iupper - ilower + 1 # Create the matrix. # Note that this is a square matrix, so we indicate the row partition # size twice (since number of rows = number of cols) Aref = Ref{HYPRE_IJMatrix}(C_NULL) HYPRE_IJMatrixCreate(comm, ilower, iupper, ilower, iupper, Aref) A = Aref[] # Choose a parallel csr format storage (see the User's Manual) HYPRE_IJMatrixSetObjectType(A, HYPRE_PARCSR) # Initialize before setting coefficients HYPRE_IJMatrixInitialize(A) # Now go through my local rows and set the matrix entries. # Each row has at most 5 entries. For example, if n=3: # A = [M -I 0; -I M -I; 0 -I M] # M = [4 -1 0; -1 4 -1; 0 -1 4] # Note that here we are setting one row at a time, though # one could set all the rows together (see the User's Manual). let values = Vector{Float64}(undef, 5) cols = Vector{HYPRE_Int}(undef, 5) tmp = Vector{HYPRE_Int}(undef, 2) for i in ilower:iupper nnz = 1 # The left identity block:position i-n if (i - n) >= 0 cols[nnz] = i - n values[nnz] = -1.0 nnz += 1 end # The left -1: position i-1 if i % n != 0 cols[nnz] = i - 1 values[nnz] = -1.0 nnz += 1 end # Set the diagonal: position i cols[nnz] = i values[nnz] = 4.0 nnz += 1 # The right -1: position i+1 if (i + 1) % n != 0 cols[nnz] = i + 1 values[nnz] = -1.0 nnz += 1 end # The right identity block:position i+n if (i + n) < N cols[nnz] = i + n values[nnz] = -1.0 nnz += 1 end # Set the values for row i tmp[1] = nnz - 1 tmp[2] = i HYPRE_IJMatrixSetValues(A, 1, Ref(tmp[1]), Ref(tmp[2]), cols, values) end end # Assemble after setting the coefficients HYPRE_IJMatrixAssemble(A) # Note: for the testing of small problems, one may wish to read # in a matrix in IJ format (for the format, see the output files # from the -print_system option). # In this case, one would use the following routine: # HYPRE_IJMatrixRead( , MPI_COMM_WORLD, # HYPRE_PARCSR, &A ); # = IJ.A.out to read in what has been printed out # by -print_system (processor numbers are omitted). # A call to HYPRE_IJMatrixRead is an *alternative* to the # following sequence of HYPRE_IJMatrix calls: # Create, SetObjectType, Initialize, SetValues, and Assemble # Get the parcsr matrix object to use parcsr_A_ref = Ref{Ptr{Cvoid}}(C_NULL) HYPRE_IJMatrixGetObject(A, parcsr_A_ref) parcsr_A = convert(Ptr{HYPRE_ParCSRMatrix}, parcsr_A_ref[]) # Create the rhs and solution b_ref = Ref{HYPRE_IJVector}(C_NULL) HYPRE_IJVectorCreate(comm, ilower, iupper, b_ref) b = b_ref[] HYPRE_IJVectorSetObjectType(b, HYPRE_PARCSR) HYPRE_IJVectorInitialize(b) x_ref = Ref{HYPRE_IJVector}(C_NULL) HYPRE_IJVectorCreate(comm, ilower, iupper, x_ref) x = x_ref[] HYPRE_IJVectorSetObjectType(x, HYPRE_PARCSR) HYPRE_IJVectorInitialize(x) # Set the rhs values to h^2 and the solution to zero let rhs_values = Vector{Float64}(undef, local_size) x_values = Vector{Float64}(undef, local_size) rows = Vector{HYPRE_Int}(undef, local_size) for i in 1:local_size rhs_values[i] = h2 x_values[i] = 0.0 rows[i] = ilower + i - 1 end HYPRE_IJVectorSetValues(b, local_size, rows, rhs_values) HYPRE_IJVectorSetValues(x, local_size, rows, x_values) end HYPRE_IJVectorAssemble(b) par_b_ref = Ref{Ptr{Cvoid}}(C_NULL) HYPRE_IJVectorGetObject(b, par_b_ref) par_b = convert(Ptr{HYPRE_ParVector}, par_b_ref[]) HYPRE_IJVectorAssemble(x) par_x_ref = Ref{Ptr{Cvoid}}(C_NULL) HYPRE_IJVectorGetObject(x, par_x_ref) par_x = convert(Ptr{HYPRE_ParVector}, par_x_ref[]) # Print out the system - files names will be IJ.out.A.XXXXX # and IJ.out.b.XXXXX, where XXXXX = processor id if print_system HYPRE_IJMatrixPrint(A, "IJ.out.A") HYPRE_IJVectorPrint(b, "IJ.out.b") end # Choose a solver and solve the system solver_ref = Ref{HYPRE_Solver}(C_NULL) # AMG if solver_id == 0 # Create solver HYPRE_BoomerAMGCreate(solver_ref) solver = solver_ref[] # Set some parameters (See Reference Manual for more parameters) HYPRE_BoomerAMGSetPrintLevel(solver, 3) # print solve info + parameters HYPRE_BoomerAMGSetOldDefault(solver) # Falgout coarsening with modified classical interpolaiton HYPRE_BoomerAMGSetRelaxType(solver, 3) # G-S/Jacobi hybrid relaxation HYPRE_BoomerAMGSetRelaxOrder(solver, 1) # uses C/F relaxation HYPRE_BoomerAMGSetNumSweeps(solver, 1) # Sweeeps on each level HYPRE_BoomerAMGSetMaxLevels(solver, 20) # maximum number of levels HYPRE_BoomerAMGSetTol(solver, 1e-7) # conv. tolerance # Now setup and solve! HYPRE_BoomerAMGSetup(solver, parcsr_A, par_b, par_x) HYPRE_BoomerAMGSolve(solver, parcsr_A, par_b, par_x) # Run info - needed logging turned on num_iterations = Ref{HYPRE_Int}() final_res_norm = Ref{Float64}() HYPRE_BoomerAMGGetNumIterations(solver, num_iterations) HYPRE_BoomerAMGGetFinalRelativeResidualNorm(solver, final_res_norm) if myid == 0 println() println("Iterations = $(num_iterations[])") println("Final Relative Residual Norm = $(final_res_norm[])") println() end # Destroy solver HYPRE_BoomerAMGDestroy(solver) else if myid == 0 println("Invalid sovler id specified.") end end # Clean up HYPRE_IJMatrixDestroy(A) HYPRE_IJVectorDestroy(b) HYPRE_IJVectorDestroy(x) # Finalize HYPRE HYPRE_Finalize() # Finalize MPI MPI.Finalize() return 0 end # Run it if abspath(PROGRAM_FILE) == @__FILE__ main() end